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Structured Local Optima in
Sparse Blind Deconvolution

Yuqian Zhang, Han-Wen Kuo, and John Wright

Abstract—Blind deconvolution is a ubiquitous problem aiming to recover a convolution kernel a0 ∈ Rk and an activation signal
x0 ∈ Rm from their convolution y ∈ Rm. Unfortunately, this is an ill-posed problem in general. This paper focuses on the short
and sparse blind deconvolution problem, where the convolution kernel is short (k � m) and the activation signal is sparsely and
randomly supported (‖x0‖0 � m). This variant captures the structure of the convolutional signals in several important
application scenarios. In this paper, we normalize the convolution kernel to have unit Frobenius norm and then cast the blind
deconvolution problem as a nonconvex optimization problem over the kernel sphere. We demonstrate that (i) in a certain region
of the sphere, every local optimum is close to some shift truncation of the ground truth, and (ii) for a generic unit kernel a0, when
the sparsity of activation signal satisfies θ . k−2/3 and number of measurements m & poly (k), the proposed initialization
method together with a descent algorithm which escapes strict saddle points recovers some shift truncation of the ground truth
kernel.

Index Terms—Blind Deconvolution, Nonconvex Optimization.
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1 INTRODUCTION

B LIND deconvolution is the problem of recovering two
unknown signals a0 and x0 from their convolution

y.
Blind deconvolution is the problem of recovering

two unknown signals a0 and x0 from their convolu-
tion y = a0 ∗ x0. This fundamental problem recurs
across several fields, including astronomy, microscopy
data processing [CSL+17], neural spike sorting [Lew98],
computer vision [KH96], etc. However, this problem is
ill-posed without further priors on the unknown signals,
as there are infinitely many pairs of signals (a,x) whose
convolution equals a given observation y. Fortunately,
in practice, the target signals (a,x) are often structured.
In particular, a number of practical applications exhibit a
common short-and-sparse structure:

In Neural spike sorting: Neurons in the brain fire brief
voltage spikes when stimulated. The signatures of the
spikes encode critical features of the neuron and the
occurrence of such spikes are usually sparse and random
in time [Lew98], [ETS11].

In Microscopy data analysis: The nanoscale materials
of interests are contaminated by randomly and sparsely
distributed “defects”, which can dramatically change the
electronic structure of the material [CSL+17].
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In Image deblurring: Blurred images due to camera
shake can be modeled as a convolution of the latent
sharp image and a kernel capturing the motion of the
camera. Although natural images are not sparse, they
typically have (approximately) sparse gradients [CW98],
[LWDF11].

In the above applications, the observation signal y ∈
Rm is generated via the convolution of a short kernel
a0 ∈ Rk with k � m and a sparse activation coefficient
x0 ∈ Rm with ‖x0‖0 � m. Without loss of generality,
we let y denote the circular convolution of a0 and x0

y = a0 ~ x0 = ã0 ~ x0, (1)

with ã0 ∈ Rm denoting the zero padded m-length
version of a0, which can be expressed as ã0 = ιka0.
Here, ιk : Rk → Rm is a zero padding operator. Its
adjoint ι∗k : Rm → Rk acts as a projection onto the lower
dimensional space by keeping the first k components.

The short-and-sparse blind deconvolution problem
exhibits a scaled-shift ambiguity, which derives from the
basic properties of a convolution operator. Namely, for
any observation signal y, and any nonzero scalar α and
integer shift τ , the following equality always holds

y = (±αsτ [ã0]) ~
(
±α−1s−τ [x0]

)
. (2)

Here, s−τ [v] denotes the cyclic shift of the vector v by τ
entries:

sτ [v](i) = v ([i− τ − 1]m + 1) , ∀ i ∈ {1, · · · ,m} .
(3)

Clearly, both scaling and cyclic shifts preserve the
short-and-sparse structure of (a0,x0). This scaled-shift
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Fig. 1: Structured Local Minimum
[ZLK+17]. Top: observation y = a0 ~ x0,
ground truth a0 and x0; Bottom: recovered
a~ x, a, and x at one local minimum.

symmetry raises nontrivial challenges for computation,
making straightforward convexification approaches inef-
fective, and leading to complicated nonconvex optimiza-
tion landscape. [ZLK+17] considers a natural nonconvex
formulation of sparse blind deconvolution, in which the
kernel a ∈ Rk is constrained to have unit Frobenius
norm. [ZLK+17] argues that under certain idealized
conditions, this problem has well-structured local optima,
in the sense that every local optimum is close to some shift
truncation of the ground truth. The presence of these local
optima can be viewed as a result of the shift symmetry
associated to the convolution operator: the shifted and
truncated kernel ι∗ksτ [ã0] can be convolved with the
sparse signal s−τ [x0] (shifted in the opposite direction)
to produce a near approximation to y:

(ι∗ksτ [ã0]) ~ s−τ [x0] ≈ y. (4)

In [ZLK+17], the geometric insight about local min-
ima is corroborated with a lot of experiments, but
rigorous proof is only available under rather restrictive
conditions. In this paper, we adopt the unit Frobenius
norm constraint as in [ZLK+17], but consider a different
objective function over the sphere (denoted as Sk−1). We
formulate the sparse blind deconvolution problem as the
following optimization problem:

min −‖y̌ ~ ry (q)‖44 s. t. ‖q‖F = 1 (5)

Here, y̌ denotes the reversal1 of y and ry (q) is a
preconditioner which we will discuss in detail later.
Convolution y̌ ~ ry (q) approximates the reversed un-
derlying sparse activation signal x0, and −‖·‖44 serves
as the sparsity penalty.

This paper studies the function landscape of the
short-and-sparse blind deconvolution problem assuming
the short k-length convolutional kernel lives on a unit
Frobenius norm sphere Sk−1. We demonstrate that even
when x0 is relatively dense, a shift truncation ι∗ksτ [ã0]
of the ground truth still can be obtained as one local
minimum in certain region of the sphere. This benign
region contains the sub-level set of small objective value,
and an initial point with small objective value can be

1. Denote y = [y1, y2, · · · , ym−1, ym]T , then its reversal y̌ =
[y1, ym, ym−1, · · · , y2]T .

easily found. Specifically, for a generic kernel uniformly
sampled from the sphere a0 ∈ Sk−1, if the sparsity rate
θ . k−2/3 and the number of measurementm & poly(k),
initializing with some k consecutive entries of y and
applying any optimization method which (i) is a descent
method, and (ii) converges to a local minimizer under a
strict saddle hypothesis [JGN+17], [XRKM17], produces
a near shift-truncation of the ground truth.

1.1 Related Works
Even after accounting for the scale ambiguity, the general
blind deconvolution problem remains ill-posed. Different
types of prior knowledge about the unknown signals
have been introduced to make the blind deconvolution
problem well posed. For example, if the signals a0 and x0

live on known linear subspaces, the blind deconvolution
problem can be cast as a low-rank matrix recovery
problem, and solved via semidefinite programming.
[ARR12] proves that if one of the subspaces is random
and the other satisfies a spectral flatness condition,
this approach recovers the pair (a0,x0) up to scale.
[LLSW16] provides a more efficient nonconvex algorithm
for blind deconvolution under this subspace model.
[LS15] consider a more complicated model in which
one of the signals is sparse in some known dictionary.
[LLJB17] considers the case where both convolutional
signals are sparse in some known dictionaries. These
known dictionaries are assumed to be random (e.g.,
Gaussian or partial Fourier). Identifiability of these
blind deconvolution problems is investigated in [LLB16],
[LLB17]. [LS17] further addresses a simultaneous demix-
ing and deconvolution problem, where the observation
is the superposition of multiple convolutions.

The above results offer efficient and guaranteed
algorithms for blind deconvolution problems in which
the signals of interest are sparse in a random dictionary.
However, in the short-and-sparse blind deconvolution
problem in microscopy image analysis or neural spike
sorting, the sparse signal is sparse with respect to the
standard basis rather than a random dictionary. Any
cyclic shift of a standard basis is another standard
basis, therefore the short-and-sparse blind deconvolution
problem is only identifiable up to shifts. This is in
contrast to the aforementioned random models, which
only exhibit scale ambiguity. When casting the short-and-
sparse blind deconvolution problem as an optimization
problem, this shift ambiguity creates a large group
of equivalent global solutions (convolutional pairs of
opposite shifts sτ [ã0] and s−τ [x0]) and therefore much
more complicated optimization landscape.

For sparsity in the standard basis, [CM14], [CM15]
show that sparsity alone is not sufficient for unique
recovery, by demonstrating the existence of manifolds
(a,x) of signals that are not identifiable from the con-
volution y = a ∗ x. This construction requires both the
support and magnitudes of the two signals to be regular:
the support of x needs to have the form J ∪ s1(J) for
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some set J , and the nonzero entries of x to take on
specific values. When x is either Bernoulli or Bernoulli-
Gaussian, with probability one, the pair (a,x) does not
fall in this non-identifiable set. [Chi16] proposes a convex
relaxation for a variant of the sparse blind deconvolution
problem in which a lies in a random subspace and
x is a superposition of spikes with continuous-valued
locations. A strong point of this method is that it avoids
discretization. Because of the random subspace model
on a, the results of [Chi16] are not directly comparable to
ours. However, if the rates from this work were adapted
to the short-and-sparse setting, they would require x
to be sparse enough that the observation y contains
many isolated (non-overlapping) copies of a. This seems
to reflect a fundamental limitation of convexification
approaches in handling signals with multiple structures
[OJF+15]. [WC16] studies another variant where multiple
independent observations of circulant convolutions are
available, motivated by multi-channel blind deconvolu-
tion. Although the convolution kernel is short compared
to the total measurements, each independent “short”
measurement is self contained. While in the short-and-
sparse blind deconvolution problem, only one measure-
ment is available and any “short” measurement heavily
depends on adjacent measurements. This nuance leads
to much more complicated optimization geometry.

Although the theory of short-and-sparse blind de-
convolution remains completely open, many nonconvex
algorithms have been developed and practiced in com-
puter vision, where the convolution kernel captures the
image blurring process due to camera shake [LWDF11].
Motivated by this physical model, people assume the
convolutional kernel to be entry-wise nonnegative and
sums up to 1, and then minimize the objective function
of following form

min
a≥0,‖a‖1=1

min
x

1
2 ‖y − a~ x‖22 + λ ‖x‖? . (6)

In the image deblurring application, x represents the
gradient of a natural image and ‖·‖? penalizes the
sparsity of x. However, such formulation always admits
one local minimum obtained at the convolutional pair
(a,x) = (δ,y) [BVG13], [PF14]. In contrast, [WZ13],
[ZWZ13] carefully compare the difference in MAP and
VB approaches, and propose to instead constrain a to
have unit Frobenius norm – i.e., to reside on a high-
dimensional sphere. [ZLK+17] studies the optimization
landscape of the sphere constrained sparse blind decon-
volution and firstly identifies the structure of the local
solutions. In particular, [ZLK+17] casts the short-and-
sparse blind deconvolution problem as an optimization
problem over the sphere:

min
a∈Sk−1

min
x

1
2 ‖y − a~ x‖22 + λ ‖x‖1 , (7)

and presents empirical evidence that local minima ā are
close to certain shift truncations of a0. [ZLK+17] further
proves that a “linearized” version of (7), which neglects

quadratic interactions in a, satisfies this property, in
the “dilute limit” in which the sparse signal x0 is a
single spike. In this paper, we demonstrate that for a
different objective function, this claim holds under much
broader conditions than what is proved in [ZLK+17]. In
particular, our results allow the sparse signal x0 to be
much denser.

1.2 Assumptions and Notations

We assume that x0 ∈ Rm follows the Bernoulli-Gaussian
(BG) model with sparsity level θ: x0 (i) = ωigi with
ωi ∼ Ber (θ) and gi ∼ N (0, 1), where all the different
random variables are jointly independent. For simplicity,
we write x0 ∼i.i.d. BG (θ).

Throughout this paper, vectors v ∈ Rk are indexed
as v = [v1, v2, · · · , vk], and [·]m denotes the modulo
operator of m. We use ‖·‖2 to denote the operator norm,
‖·‖F to denote the Frobenius norm, and ‖·‖p to denote
the entry wise `p norm. (·)I denotes the projection
onto subset with index I and PS [·] = ·

‖·‖F
denotes the

projection onto the Frobenius sphere. (·)◦p is the entry
wise p-th order exponent operator. We use C , c to denote
positive constants, and their value change across the
paper.

Furthermore, we refer a short kernel sampled follow-
ing a uniform distribution over the sphere as a generic
kernel on the sphere.

2 PROBLEM FORMULATION AND MAIN RE-
SULTS

In the short-and-sparse blind deconvolution problem,
any k consecutive entries in y only depend on 2k − 1
consecutive entries in x0:

yi =
[
yi, · · · , y1+[i+k−1]m

]T
(8)

=
k−1∑

τ=−(k−1)

x1+[i+τ−1]m
· ι∗ksτ [ã0] (9)

=


ak ak−1 · · · a1 · · · 0 0
0 ak · · · a2 · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · ak−1 · · · a1 0
0 0 · · · ak · · · a2 a1


︸ ︷︷ ︸

A0∈Rk×(2k−1)



x1+[i−k]m
...
xi
...

x1+[i+k−2]m


︸ ︷︷ ︸
xi∈R(2k−1)×1

.

(10)

Note that matrix A0 satisfies

σ2
min ≤

∥∥∥AT
0 e1

∥∥∥2

2
= ‖a0‖22 ≤

∥∥∥AT
0 a0

∥∥∥2

2
≤ σ2

max. (11)

Write Y = [y1,y2, . . . ,ym] ∈ Rk×m and X0 =
[x1, . . . ,xm] ∈ R2k−1×m. Using the above expression,
we have that

Y = A0X0. (12)
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Each column xi of X0 only contains some 2k− 1 entries
of x0. The rows of X0 are cyclic shifts of the reversal of
x0:

X0 =

[
s0[x̌0]

...
s2k−2[x̌0]

]
. (13)

The shifts of x̌0 are sparse vectors in the linear subspace
row(X0). Note that if we could recover some shift
sτ [x̌0], we could subsequently determine s−τ [a0] by
solving a linear system of equations, and hence solve the
deconvolution problem, up to the shift ambiguity.

2.1 Finding a Shifted Sparse Signal
In light of the above observations, a natural compu-
tational approach to sparse blind deconvolution is to
attempt to find x0 by searching for a sparse vector
in the linear subspace row(X0), e.g., by solving an
optimization problem

min ‖v‖? (14)
s. t. v ∈ row (X0) , ‖v‖2 = 1,

where ‖·‖? is chosen to encourage sparsity of the target
signal [SWW12], [SQW15], [QSW16], [HSSS16].

In sparse blind deconvolution, we do not have access
to the row space ofX0. Instead, we only observe the sub-
space row(Y ) ⊂ row(X0). The subspace row(Y ) does
not necessarily contain the desired sparse vector eTi X0,
but it does contain some approximately sparse vectors. In
particular, consider following vector in row(Y ),

v = Y Ta0 = x̌0
sparse

+
∑
i6=0

〈a0, si[a0]〉 si[x̌0]

︸ ︷︷ ︸
“noise” z

. (15)

The vector v is a superposition of a sparse signal x̌0 and
its scaled shifts 〈a0, si[a0]〉 si[x̌0]. If the shift-coherence
supτ 6=0 | 〈a0, sτ [a0]〉 | is small2 and x0 is sparse enough,
z can be viewed as small noise.3 The vector v is not
sparse, but it is spiky: a few of its entries are much larger
than the rest. We deploy a milder sparsity penalty −‖·‖44
to recover such a spiky vector, as ‖·‖44 is very flat around
0 and insensitive to small noise in the signal.4 This gives

min − 1
4 ‖v‖

4
4 (16)

s. t. v ∈ row (Y ) , ‖v‖2 = 1.

We can express a generic unit vector v ∈ row(Y ) as
v = Y T

(
Y Y T

)−1/2
q, with ‖v‖2 = ‖q‖2. This leads to

the following equivalent optimization problem over the
sphere

min ψ (q)
.
= − 1

4m

∥∥∥∥Y T
(
Y Y T

)−1/2
q

∥∥∥∥4

4

2. For a generic kernel a0, the shift-coherence is bounded as
supτ 6=0 |〈a0, sτ [a0]〉| .

√
log k/k.

3. In particular, under a Bernoulli-Gaussian model, for each j,
E[z2j ] = θ

∑
i6=0 〈a0, si[a0]〉2.

4. In comparison, the classical choice ‖·‖? = ‖·‖1 is a strict
sparsity penalty that essentially encourages all small entries to be 0.

s. t. ‖q‖2 = 1. (17)

Interpretation: Preconditioned Shifts. This objective
ψ (q) can be rewritten as

ψ (q) = − 1

4m

∥∥∥∥y̌ ~
(
Y Y T

)−1/2
q

∥∥∥∥4

4

(18)

= − 1

4m

∥∥∥∥x̌0 ~AT
0

(
Y Y T

)−1/2
q

∥∥∥∥4

4

(19)

∼ ‖x̌0 ~ ζ‖44 , (20)

where ζ = AT
0 (A0A

T
0 )−1/2q. This approximation be-

comes accurate as m grows, as

Ex0∼i.i.d.BG(θ)[Y Y
T ]

= Ex0∼i.i.d.BG(θ)[A0X0X
T
0 A

T
0 ] (21)

= θmA0A
T
0 . (22)

This objective encourages the convolution of x̌0 and ζ
to be as spiky as possible. Reasoning analogous to (15)
suggests that x̌0 ~ ζ will be spiky if

ζ = AT
0

(
A0A

T
0

)−1/2
q = el, l ∈ {1, · · · , 2k − 1} .

(23)

For simplicity, we define the preconditioned convolution
matrix

A
.
=
(
A0A

T
0

)−1/2
A0 =

[
a1 a2 · · · a2k−1

]
,

(24)

with column coherence (preconditioned shift coherence)
µ
.
= maxi6=j |〈ai,aj〉|. As A is preconditioned, we have
‖ζ‖2 = ‖q‖2 = 1 and

‖ai‖22 ≤
∥∥∥ATai

∥∥∥
2
≤ ‖ai‖2 =⇒ ‖ai‖2 ≤ 1. (25)

Here, the unit vector ζ can also be interpreted as
measuring the inner products of q with columns of
A. We will show that minimizing this objective over
a certain region of the sphere yields a preconditioned
shift truncate al, from which we can recover a shift
truncate of the original signal a0.

2.2 Structured Local Minima

We will show that in a certain region RC? ⊂ Sk−1,
the preconditioned shift truncations al are the only
local minimizers. Moreover, the other critical points in
RC? can be interpreted as resulting from competition
between several of these local minima (Figure 2). At any
saddle point, there exists strict negative curvature in the
direction of a nearby local minimizer which breaks the
balance in favor of some particular al. The region RC?
is defined as follows:

Definition 2.1. For fixed C? > 0, letting κ denote the
condition number of A0, and µ

.
= maxi6=j |〈ai,aj〉| the
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ι
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π

8
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8

Fig. 2: Saddles points
are approximately
balanced superpositions
of local minima.

column coherence of A, we define two regions RC? , R̂C? ⊂
Sk−1, as

RC?
.
=

{
q ∈ Sk−1 |

∥∥∥ATq
∥∥∥6

4
≥ C?µκ2

∥∥∥ATq
∥∥∥3

3

}
. (26)

R̂C?
.
=

{
q ∈ Sk−1 |

∥∥∥ATq
∥∥∥6

4
≥ C?µκ2

}
⊆ RC? . (27)

A simpler and smaller region R̂C? is also introduced
in Definition (2.1). This region R̂C? can be viewed as
a sub-level set for −

∥∥ATq
∥∥4

4
, which is proportional

to the objective value ψ (q) assuming m is sufficiently
large5. Therefore, once initialized within R̂C? , the iterates
produced by a descent algorithm will stay in R̂C? .

In particular, at any stationary point q ∈ R10, the
local optimization landscape can be characterized in
terms of the number of spikes (entries with nontrivial
magnitude6) in ζ. If there is only one spike in ζ, then
such stationary point q is a local minimum that is close to
one local minimizer; if there are more than two spikes in
ζ, then such stationary point q is saddle point. Based on
the above characterizations of stationary points in RC?
with C? ≥ 10, we can deduce that any local minimum is
close to some al, a preconditioned shift truncation of the
ground truth a0.

Theorem 2.2 (Main Result). Assuming observation y ∈
Rm is the circulant convolution of a0 ∈ Rk and x0 ∼i.i.d.

BG (θ) ∈ Rm, where the convolutional matrix A0 has
minimum singular value σmin > 0 and condition number
κ ≥ 1, and A has column coherence 0 ≤ µ < 1. There
exists a positive constant C such that whenever the number of
measurements

m ≥ C
min

{
µ−4/3, κ2k2

}
(1− θ)2

σ2
min

κ8k4 log3

(
κk

(1− θ)σmin

)
(28)

and θ ≥ log k/k, then with high probability, any local optima
q̄ ∈ R̂2C? satisfies

|〈q̄,PS [al]〉| ≥ 1− c?κ−2 (29)

for some integer 1 ≤ l ≤ 2k − 1. Here, C? ≥ 10 and
c? = 1/C?.

This theorem says that any local minimum in R̂2C?

is close to some normalized column of A given polyno-
mially many observation. The parameters σmin, κ and µ

5. Please refer to Section 3 for more arguments.
6. We call any ζl with magnitude no smaller than 2µ ‖ζ‖33 / ‖ζ‖

4
4

to be nontrivial and defer technical reasonings to later sections.

effectively measure the spectrum flatness of the ground
truth kernel a0 and characterize how broad the results
hold. A generic kernel usually has larger σmin, smaller κ
and µ, which equivalently implies the result holds in a
large sub-level set R̂2C? even with fewer observations.7

Hence, once assuring the algorithm finds a local
minimum in R̂2C? , then some shifted truncation of the
ground truth kernel a0 can be recovered. In other words,
if we can find an initialization point with small objective
value, then a descent algorithm minimizing the objective
function guarantees that q always stays in R̂2C? in
proceeding iterations. Therefore, any descent algorithm
that escapes a strict saddle point can be applied to find
some al, or some shift truncation of a0.

2.3 Initialization with a Random Sample
Recall that yi = A0xi, which is a sparse superposition
of about 2θk columns of A0. Intuitively speaking, such
qinit already encodes certain preferences towards a few
preconditioned shift truncations of the ground truth.
Therefore, we randomly choose an index i and set the
initialization point as

qinit = PS

[(
Y Y T

)−1/2
yi

]
. (30)

Using Ex0∼i.i.d.BG(θ)[Y Y
T ] = θmA0A

T
0 again, we have

ζinit = ATqinit ≈ PS

[
ATAxi

]
. (31)

For a generic kernel a0 ∈ Sk−1, ATA is close to
a diagonal matrix, as the magnitudes of off-diagonal
entries are bounded by column incoherence µ. Hence, the
sparse property of xi can be approximately preserved,
that PS

[
ATAxi

]
is spiky vector with small −‖·‖44. By

leveraging the sparsity level θ, one can make sure such
initialization point qinit falls in R̂2C? . Therefore, we pro-
pose Algorithm 1 for solving sparse blind deconvolution
with its working conditions stated in Corollary 2.3. For
the choice of descent algorithms which escape strict
saddle points, there are several such algorithms specially
tailored for sphere constrained optimization problems
[ABG07], [GWY09].

Corollary 2.3. Suppose the ground truth a0 kernel has
preconditioned shift coherence 0 ≤ µ ≤ 1

8×48 log−3/2 (k)
and sparse coefficient x0 ∼i.i.d. BG (θ) ∈ Rm. There exist
positive constants C ≥ 25604 and C ′ such that whenever the
sparsity level

64k−1 log k ≤ θ ≤ min
{

1
482µ

−2k−1 log−2 k,(
1
4 −

640
C1/4

) (
3C?µκ

2
)−2/3

k−1
(
1 + 36µ2k log k

)−2 }
,

and signal length

m ≥ max
{
Cθ2σ−2

minκ
6k3

(
1 + 36µ2k log k

)4
log (κk) ,

7. In comparison, a low pass or high pass signal always has
smaller σmin, bigger κ and µ, with simulations presented in the
Appendix (Figure 7).
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Algorithm 1 Short and Sparse Blind Deconvolution

Input: Observations y ∈ Rm and kernel size k.
Output: Recovered Kernel ā.

1: Generate random index i ∈ [1,m] and set

qinit = PS

[(
Y Y T

)−1/2
yi

]
.

2: Solve following nonconvex optimization problem
with a descent algorithm that escapes saddle point
and find a local minimizer

q̄ = arg min
q∈Sk−1

ϕ (q) .

3: Set ā = PS

[(
Y Y T

)1/2
q̄
]
.

C ′ (1− θ)−2
σ−2

min min
{
µ−1, κ2k2

}
κ8k4 log3 (κk)

}
,

then with high probability, Algorithm 1 recovers ā such that

‖ā± PS [ιksτ [ã0]]‖2 ≤ 4
√
c? + ck−1 (32)

for some integer shift − (k − 1) ≤ τ ≤ k − 1.

For a generic a0 ∈ Sk−1, plugging in the nu-
merical estimation8 of the parameters σmin, κ and µ
(Figure 3), accurate recovery can be obtained with
m & θ2k6 poly log (k) measurements and sparsity level
θ . k−2/3 poly log (k). For bandpass kernels a0, σmin is
smaller and κ, µ are larger, and so our results require x0

to be longer and sparser.

3 ASYMPTOTIC FUNCTION LANDSCAPE

In the next two sections, we discuss some key elements
of our analysis. In this section, we first investigate the
stationary points of the “population” objective Ex0 [ψ(q)].
We demonstrate that any local minimizer in RC? is
close to a signed column of A, a preconditioned shift
truncation of a0. In the next section, we then demonstrate
that when m is sufficiently large, the “finite sample”
objective ψ(q) satisfies the same property.

In Section 3.1, we show how to accurately estimate
the vector ζ = ATq at any stationary point q ∈ RC? .
In Section 3.2, we show how the number of spikes in ζ
determines the geometry around a stationary point.

• For any stationary point q ∈ RC? , its precondi-
tioned cross-correlation ζ has at least one large
entry (Section 3.2.1). This implies that any station-
ary point q must be close some local minimizer.

• If ζ has only one large entry, then q is a local
minimizer. (Section 3.2.2)

• If ζ has more than one large entry, then q is a strict
saddle point. (Section 3.2.3)

8. Exact and rigorous calculation of these parameters involves
property of the banded Toeplitz matrix, which has been under
intense study while remains open.

With above three characterizations, we can deduce that
any local minimizer in RC? is close to some column of
A, a preconditioned shift truncation of a0.

3.1 Stationary Points

Using Ex0∼i.i.d.BG(θ)[Y Y
T ] = θmA0A

T
0 again, the

expectation of the objective function ψ (q) can be ap-
proximated as

Ex0∼i.i.d.BG(θ)[ψ(q)]

≈ Ex0∼i.i.d.BG(θ)

[
− 1

m

∥∥∥∥Y T
(
θmA0A

T
0

)−1/2
q

∥∥∥∥4

4

]

= − 1

θ2m2

[
3θ (1− θ)

∥∥∥ATq
∥∥∥4

4
+ 3θ2

∥∥∥ATq
∥∥∥4

2

]
= −3 (1− θ)

θm2

∥∥∥ATq
∥∥∥4

4
− 3

m2
. (33)

In the next section, we will argue that the critical
points of the finite sample objective ψ(q) are close
to those of the asymptotic approximation φ. We can
therefore study the critical points of ψ by studying the
simpler problem

min
q∈Rk−1

ϕ (q)
.
= −1

4

∥∥∥ATq
∥∥∥4

4
= −1

4
‖ζ‖44 . (34)

The Euclidean gradient and Hessian for ϕ(q) can be
calculated as

∇ϕ(q) = −Aζ◦3, (35)

∇2ϕ(q) = −3Adiag
(
ζ◦2
)
AT . (36)

We can study the critical points of ϕ over the sphere
using the Riemannian gradient and Hessian [AMS07]

gradϕ(q) = Pq⊥ [∇ϕ(q)] (37)

= −Aζ◦3 + q ‖ζ‖44 , (38)

Hessϕ(q) = Pq⊥
[
∇2ϕ(q)− 〈∇ϕ(q), q〉 I

]
Pq⊥ (39)

= −Pq⊥
[
3Adiag(ζ◦2)AT−‖ζ‖44 I

]
Pq⊥ .

(40)

Here, Pq⊥ = I − qqT denotes the projection onto the
tangent space of the Frobenius sphere at point q ∈ Sk−1.

As in the Euclidean space, a stationary point on
the sphere satisfies grad [ϕ] (q) = 0. Using (38), at any
stationary point of ϕ,

Aζ◦3 − q ‖ζ‖44 = 0. (41)

Left-multiplying both sides of the equation by AT , we
have

ATAζ◦3 −ATq ‖ζ‖44 = 0. (42)

For the i-th entry, following equality always holds

0 = ‖ai‖22 ζ
3
i +

∑
j 6=i
〈ai,aj〉 ζ3

j − ζi ‖ζ‖
4
4 (43)
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⇒ 0 = ζ3
i − ζi

‖ζ‖44
‖ai‖22︸ ︷︷ ︸
αi

+

∑
j 6=i 〈ai,aj〉 ζ3

j

‖ai‖22︸ ︷︷ ︸
βi

. (44)

For simplicity, we deploy the following notations

αi =
‖ζ‖44
‖ai‖22

, βi =

∑
j 6=i 〈ai,aj〉 ζ3

j

‖ai‖22
. (45)

If αi � βi, Proposition 3.1 shows that ζi is very close to
one of three values: 0, or ±√αi.

Proposition 3.1. Let q ∈ Sk−1 be a stationary point
satisfying

∥∥ATq
∥∥6

4
≥ 4µ

∥∥ATq
∥∥3

3
, then the i-th entry of

ζ = ATq falls in the range

{0,±
√
αi} ±

2βi
αi

, (46)

with

αi =
‖ζ‖44
‖ai‖22

, βi =

∑
j 6=i 〈ai,aj〉 ζ3

j

‖ai‖22
. (47)

Proof. Since ‖ζ‖64 ≥ 4µ ‖ζ‖33 and ‖ai‖2 ≤ 1, for any
index i we have

‖ζ‖64 ≥ 4µ ‖ζ‖33 ≥ 4 ‖ai‖2
∑
j 6=i
〈ai,aj〉 ζ3

j . (48)

This implies βi ≤ 1
4α

3/2
i for any index i. Therefore, the

roots can be estimated by applying Lemma A.2 with

√
αi =

‖ζ‖24
‖ai‖2

, (49)

2βi
αi

=
2
∑
j 6=i 〈ai,aj〉 ζ3

j

‖ζ‖44
≤

2µ ‖ζ‖33
‖ζ‖44

. (50)

This implies that either |〈ai, q〉| is large (≈ √αi) or it
is very close to zero. In other words, a stationary point
q ∈ RC? is either close to or far away from a column ai.

3.2 Function Landscape on RC?
In this section, we study the optimization landscape
around a stationary point q by bounding the eigenvalues
of the Riemannian Hessian Hess [ϕ] (q): if Hess [ϕ] (q)
is positive semidefinite, then the ϕ is convex in a
neighborhood of q and hence q is a local minimum; if
Hess [ϕ] (q) has a negative eigenvalue, then there exists a
direction along which the objective value decreases and
hence q is a saddle point.

Note that the Riemannian Hessian Hess [ϕ] (q) at sta-
tionary point q is a function of ζ, which can be accurately
estimated when constrained in RC? with C? ≥ 10. By
plugging the estimation of ζ in the Riemannian Hessian,
we can bound the eigenvalues of Hess [ϕ] (q), and hence
we can characterize the optimization landscape around
a stationary point q.

3.2.1 Nontrivial Preference of a Stationary Point
First, we demonstrate that for any stationary point q ∈
RC? with C? ≥ 10, ζ must have at least one large entry.

Lemma 3.2. For any stationary point q ∈ RC? with C? ≥
10,

‖ζ‖∞ ≥
2µ ‖ζ‖33
‖ζ‖44

. (51)

Proof. We give a proof by contradiction. Suppose that
q ∈ RC? with C? ≥ 10, and every entry of ζ has small
magnitude such that ‖ζ‖∞ < 2µ ‖ζ‖33 / ‖ζ‖

4
4, then

‖ζ‖44 =
〈
ζ◦2, ζ◦2

〉
(52)

≤
〈
ζ◦2, ‖ζ‖2∞ 1

〉
(53)

= ‖ζ‖2∞ (54)

≤
(

2βi
αi

)2

(55)

≤
4µ2 ‖ζ‖63
‖ζ‖84

, (56)

which indicates ‖ζ‖64 ≤ 2µ ‖ζ‖33 and contradicts the
assumption ‖ζ‖64 > C?µκ

2 ‖ζ‖33. Therefore, at least one
entry of ζ has large enough magnitude.

Geometrically, the nontrivial entry ζi indicates the
preference to corresponding column ai, as ζi = 〈ai, q〉.
Therefore, Lemma 3.2 implies that any stationary point
q in RC? should be close to at least one column of A.

3.2.2 Local Minima
Suppose q ∈ RC? (C? ≥ 10) is a stationary point and
vector ζ only has one nontrivial entry ζl, then we can
demonstrate that the Riemannian Hessian Hessϕ (q) is
positive definite, and hence q is a local minimizer near
al.

Lemma 3.3. Suppose q is a stationary point in RC? with
C? ≥ 10, and ζ = ATq has only one entry ζl of magnitude
no smaller than 2µ ‖ζ‖33 / ‖ζ‖

4
4. Then q is a local minimum

near al and |〈q,PS [al]〉| > 1− 2c?κ
−2 with c? = 1/C?.

Proof. Suppose ζ has only one big entry ζl, and other
entries are bounded by 2βl/αl

‖ζ‖44 = ζ4
l +

∑
j 6=l

ζ4
j (57)

≤ ζ4
l + max

j 6=l
ζ2
j ·
∑
j 6=l

ζ2
j (58)

≤ ζ4
l +

4µ2 ‖ζ‖63
‖ζ‖84

, (59)

with ‖ζ‖64 ≥ C?µκ
2 ‖ζ‖33, and for simplicity let c? =

1/C?, we have

ζ4
l ≥ ‖ζ‖

4
4 −

4µ2 ‖ζ‖63
‖ζ‖84

≥
(
1− 4c2?κ

−4
)
‖ζ‖44 . (60)
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On the other hand, we also have

ζ2
l ≤

(√
αl +

2βl
αl

)2

(61)

≤
‖ζ‖44
‖ai‖22

+
4µ ‖ζ‖33
‖ai‖2 ‖ζ‖

2
4

+
4µ2 ‖ζ‖63
‖ζ‖84

(62)

≤
‖ζ‖44
‖ai‖22

(
1 + 4c?κ

−2 + 4c2?κ
−4
)
. (63)

Combining above two inequalities, we have

ζ2
l ≤

1 + 4c?κ
−2 + 4c2?κ

−4

1− 4c2?κ
−4

ζ4
l

‖ai‖22
, (64)

thus the local minimum q is close to al:

|〈q,al〉|
‖al‖2

≥
√

1− 4c2?κ
−4

1 + 2c?κ−2
≥ 1− 2c?κ

−2. (65)

Next, we need to verify that the Riemannian Hessian
at q is positive definite, recall that

Hessϕ (q) = −Pq⊥
[
3A diag(ζ◦2)AT − ‖ζ‖44 I

]
Pq⊥ .

(66)
Let v be a unit vector such that v ⊥ q, then

vT Hessϕ (q)v (67)

= −vT
(

3Adiag(ζ◦2)AT − ‖ζ‖44 I
)
v (68)

= ‖ζ‖44 − 3vTA diag(ζ◦2)ATv (69)

= ‖ζ‖44 − 3 〈al,v〉2 ζ2
l − 3

∑
i6=l
〈ai,v〉2 ζ2

i (70)

≥ ‖ζ‖44 − 3 〈al,v〉2 ζ2
l − 3 max

i6=l
ζ2
i . (71)

The last inequality is due to
∑
i6=l 〈ai,v〉

2 ≤
∥∥ATv

∥∥2

2
=

1. Since v ⊥ q and ζl is the only entry with nontrivial
magnitude, then derive from (65):

〈al,v〉2 ζ2
l ≤ 2c? ‖al‖22

(√
αl +

2βl
αl

)2

(72)

≤ 2c? ‖al‖22 · (1 + 2c?)
2
αl (73)

≤ 2c?
(
1 + 2c2?

)2 ‖ζ‖44 , (74)

and

max
i6=l

ζ2
i ≤

4β2

α2
≤

4µ2 ‖ζ‖63
‖ζ‖84

≤
4c2? ‖ζ‖

12
4

‖ζ‖84
≤ 4c2? ‖ζ‖

4
4 .

(75)

Hence, the inequality vT Hessϕ (q)v ≥(
1− 6c? − 36c2? − 24c3?

)
‖ζ‖44 holds for any v satisfying

v ⊥ q, thus implies positive curvature along any tangent
direction at such stationary point q when C? ≥ 10.

The lemma says if q is a stationary point in RC?

and q is only close to one column al, then q is a local
minimizer and satisfies |〈q,PS [al]〉| > 1− 2c?κ

−2 with
c? = 1/C?.

3.2.3 Saddle Points
At last, if q ∈ RC? (C? ≥ 10) is a stationary point and
vector ζ has more than one nontrivial entry. Denote
any two nontrivial entries of ζ with ζl and ζl′ , then we
can prove that the Riemannian Hessian Hessϕ (q) has
negative curvature in the span of al and al′ , hence q is a
saddle point.

Lemma 3.4. Suppose q is a stationary point in RC? with
C? ≥ 10, and ζ = ATq has at least two entries ζl and
ζl′ with magnitude ≥ 2µ ‖ζ‖33 / ‖ζ‖

4
4, then the Riemannian

Hessian at q has at least one negative eigenvalue and q is a
saddle point.

Proof. Suppose ζ has at least two big entries ζl and ζl′
satisfying

ζ2
l ≥

(√
αl −

2βl
αl

)2

(76)

≥
‖ζ‖44
‖al‖22

−
4µ ‖ζ‖33
‖ζ‖24 ‖al‖2

+
4µ2 ‖ζ‖63
‖ζ‖84

(77)

>
‖ζ‖44
‖al‖22

−
4µ ‖ζ‖33
‖ζ‖24 ‖al‖2

, (78)

and ζ`′ likewise. Since the nontrivial entry ζl = 〈al, q〉,
and again let c? = 1/C?, it is easy to show that the norm
of al is sufficiently large:

‖al‖22 ≥ ζ
2
l ≥

(√
αl −

2βl
αl

)2

(79)

≥ (1− 2c?)
2 ‖ζ‖

4
4

‖al‖22
(80)

≥ (1− c?)2
C2/3
?

µ2/3 ‖ζ‖23
‖al‖22

, (81)

or
‖al‖2 ≥ (1− c?)1/2

C1/6
? µ1/6 ‖ζ‖1/23 . (82)

Similar result holds for ‖al′‖2, therefore

µ

‖al‖2 ‖al′‖2
≤ µ2/3

C
1/3
? ‖ζ‖3

≤
C
−2/3
? ‖ζ‖44
C

1/3
? ‖ζ‖33

≤ c?. (83)

Now we are ready to show there exists a unit vector v
such that v ∈ span(al,al′) and v ⊥ q, and the Hessian
has negative curvature along such v:

vT Hessϕ(q)v

= −3vTAdiag(ζ2)ATv + ‖ζ‖44 (84)

≤ −3vT
(
alζ

2
l a

T
l + al′ζ

2
l′a

T
l′

)
v + ‖ζ‖44 (85)

< −3

(∣∣∣∣〈 al
‖al‖2

,v

〉∣∣∣∣2 +

∣∣∣∣〈 al′

‖al′‖2
,v

〉∣∣∣∣2
)
‖ζ‖44

+
4µ ‖ζ‖33
‖ζ‖24

(‖al‖2 + ‖al′‖2) + ‖ζ‖44 (86)

< −3

(
1− µ

‖al‖2 ‖al′‖2

)
‖ζ‖44
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+
4µ ‖ζ‖33
‖ζ‖24

(‖al‖2 + ‖al′‖2) + ‖ζ‖44 (87)

≤ (−2 + 11c?) ‖ζ‖44 . (88)

The third inequality is implied by Lemma A.3, and the
final upper bound for vT Hessϕ(q)v is negative when
C? ≥ 10.

This lemma says if the stationary point q has large
inner product with any two columns al and al′ , then
this q is a saddle point and the objective value decreases
along the direction that breaks symmetry between al
and al′ . The saddle point q can be seen as resulting from
the competition between the two target solutions al and
al′ .

4 LARGE SAMPLE CONCENTRATION

In this section, we argue that the geometric characteristics
of ψ (q) are similar to those of ϕ (q), by demonstrating
that the critical points of the finite sample objective
function ψ(q) are similar to those of the asymptotic
objective function ϕ(q):

• Critical points are close. The Riemannian gra-
dient (Lemma 4.2) and Hessian (Lemma 4.3)
concentrate, such that there is a bijection between
critical points qϕ of ϕ and critical points qψ of ψ,
with ‖qϕ − qψ‖2 small.

• Curvature is preserved. The Riemannian Hessian
(Lemma 4.3) concentrates, such that Hess[ψ](qfs)
has a negative eigenvalue if and only if
Hess[ϕ](qpop) has a negative eigenvalue, and
Hess[ψ](qfs) is positive definite if and only if
Hess[ϕ](qpop) is positive definite.

This implies that every local minimizer of the finite
sample objective function is close to a preconditioned
shift-truncation (Lemma 4.1).

Lemma 4.1. If the following inequalities hold∥∥∥∥grad[ψ] (q)− 3 (1− θ)
θm2

grad[ϕ] (q)

∥∥∥∥
2

≤ 3c?
2κ2

1− θ
θm2

∥∥∥ATq
∥∥∥6

4
, (89)∥∥∥∥Hess[ψ] (q)− 3 (1− θ)

θm2
Hess[ϕ] (q)

∥∥∥∥
2

≤ 3
(
1− 6c? − 36c2? − 24c3?

) 1− θ
θm2

∥∥∥ATq
∥∥∥4

4
. (90)

for all q ∈ R2C? with C? ≥ 10 and c? = 1/C?, then any
local minimum q̄ of ψ (q) in R2C? satisfies |〈q̄,PS [al]〉| ≥
1− 2c?κ

−2 for some index l.

Proof. Please refer to Appendix B.

The Riemannian gradient and Hessian of the finite
sample objective function ψ (q) have similar expressions
as those of the asymptotic objective function ϕ(q).

Let η = Y T
(
Y Y T

)−1/2
q ∈ Sm−1. Then

ψ (q) = − 1

4m

∥∥∥∥Y T
(
Y Y T

)−1/2
q

∥∥∥∥4

4

(91)

= − 1

4m
‖η‖44 , (92)

we calculate the Euclidean gradient and Hessian of the
objective function

∇ψ (q) = − 1

m

(
Y Y T

)−1/2
Y η◦3, (93)

∇2ψ (q) = − 3

m

(
Y Y T

)−1/2
Y diag(η◦2)Y T

(
Y Y T

)−1/2
.

(94)

Similarly, the Riemannian gradient and Hessian have the
form

grad[ψ] (q)

= Pq⊥ [∇ψ (q)] (95)

= − 1

m

(
Y Y T

)−1/2
Y η◦3 +

1

m
q ‖η‖44 , (96)

Hess[ψ] (q)

= Pq⊥
[
∇2ψ (q)− 〈∇ψ (q) , q〉 I

]
Pq⊥ (97)

= Pq⊥
[ 3

m

(
Y Y T

)−1/2
Y diag(η◦2)Y T

(
Y Y T

)−1/2

+
1

m
‖η‖44 I

]
Pq⊥ . (98)

Since Y = A0X0, we can see that the Riemannian
gradient and Hessian are (complicated) functions of the
random circulant matrix X0. Although the entries of the
vector x0 are probabilistically independent, the entries
of X0 are dependent random variables. To remove the
dependence within the random circulant matrix X0, we
break X0 into submatrices X1, . . . ,X2k−1 that

Xi =
[
xi,xi+(2k−1), · · · ,xi+(m−2k−1)

]
. (99)

Each of which is (marginally) distributed as a (2k − 1)×
m

2k−1 i.i.d. BG(θ) random matrix. Indeed, there exists a
permutation Π such that

X0Π = [X1,X2, · · · ,X2k−1] . (100)

A detailed analysis of Riemannian gradient and Hessian
(see Appendix E and Appendix F in the Appendix)
allows us to control the finite sample fluctuations of the
Riemannian gradient and Hessian in terms of analogous
quantities for each Xi. Because the Xi are i.i.d., they are
amenable to standard tools from measure concentration.
Taking a union bound over i, we show that the Rieman-
nian gradient (Lemma 4.2) and Hessian (Lemma 4.3)
concentrate as desired:

Lemma 4.2. Suppose x0 ∼i.i.d. BG (θ) ∈ Rm. There exists
positive constant C that whenever

m ≥ C
min

{
(2C?µ)

−1
, κ2k2

}
(1− θ)2

σ2
min

κ8k4 log3 (κk) , (101)
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and θ ≥ 1/k, then with probability no smaller than
1− exp (−k)− θ2 (1− θ)2

k−4− 2 exp (−θk)− 48k−7−
48m−5 − 24k exp

(
− 1

144 min
{
k, 3
√
θm
})

,

∥∥∥∥grad[ψ] (q)− 3(1− θ)
θm2

grad[ϕ] (q)

∥∥∥∥
2

≤ c1− θ
θm2

∥∥ATq
∥∥6

4

κ2
,

(102)
holds for all q ∈ R̂2C? with c ≤ 3/ (2C?) ≤ 3

20 .

Proof. Please refer to section E.

Lemma 4.3. Suppose x0 ∼i.i.d. BG (θ). There exists positive
constant C that whenever

m ≥ C
min

{(
2C?µκ

2
)−4/3

, k2
}

(1− θ)2
σ2

min

κ6k4 log3 (κk) , (103)

and θ ≥ 1/k, then with probability no smaller than
1− exp (−k)− θ2 (1− θ)2

k−4− 2 exp (−θk)− 48k−7−
48m−5 − 24k exp

(
− 1

144 min
{
k, 3
√
θm
})

,∥∥∥∥Hess[ψ] (q)− 3(1− θ)
θm2

Hess[ϕ] (q)

∥∥∥∥
2

≤ c1− θ
θm2

∥∥∥ATq
∥∥∥4

4
,

(104)
holds for all q ∈ R̂2C? with positive constant c ≤ 0.048 ≤
3
(
1− 6c? − 36c2? − 24c3?

)
.

Proof. Please refer to section F.

5 EXPERIMENTS

5.1 Properties of a Random Kernel

Our results are stated in terms of several parameters,
including the minimum singular value σmin of A0, the
condition number κ of A0, and the column coherence
of A. In Figure 3, we demonstrate the typical values of
σmin, κ, and µ for generic unit-norm kernels of varying
dimension k = 10, 20, · · · , 1000.

From this figure, for a generic unit-norm kernel, we
have following estimates:

σmin ≈ log−1 (k) , (105)

κ ≈ log4/3 (k) , (106)

µ ≈
√

log (k) /k. (107)

On the other hand, if the kernel a0 is bandpass, σmin is
smaller and κ, µ are larger. In this situation, our results
require more observations m and smaller sparsity rate θ.

5.2 Recovery Accuracy of Local Minima

We next investigate the performance of Algorithm 1
under varying settings. We define the recovery error
as err = 1 − maxτ |〈ā,PS [ι∗ksτ [ã0]]〉|, and calculate
the average error from 50 independent experiments. In
Figure 4, the left figure plots the average error when
we fix the kernel size k = 50, and vary the dimension

m and the sparsity θ of x0.9 The right figure plots the
average error when we vary the dimensions k,m of both
convolution signals, and set the sparsity as θ = k−2/3.
This figure agrees with the theory developed in this
paper: when the activation coefficient x0 is long and
sparse (large m and small θ), the algorithm obtains a
closer estimate of a shift-truncation of the ground truth.

5.3 Recovery Accuracy of the Ground Truth Kernel
In this section, we provide experiment results for the
recovery of the ground truth kernel obtained by the
annealing algorithm proposed in [ZLK+17]. The an-
nealing algorithm recovers the ground truth kernel by
minimizing the Lasso cost in (7), initialized at the zero-
padded shift truncated kernel rendered from Algorithm 1.
The recovery accuracy presented in Figure 6 is measured
as err = minτ

∥∥∥ā(+) ± sτ [ã0]
∥∥∥

2
. Here, ā(+) denotes the

local minimum in the lifted optimization space.
For comparison, we also present experiment results of

the algorithm proposed by [ZLK+17], which is composed
of solving two Lasso minimization problems over the
original sphere and lifted sphere respectively.

In terms of the recovery accuracy of the ground truth
kernel, Algorithm 1 proposed in this paper achieves bet-
ter recovery for sparser and longer observations, while
the [ZLK+17] manifests slight advantages when the
observations is limited. As the optimization landscape
studied in [ZLK+17] varies with different choice of spar-
sity parameter λ, it is possible that experiment results for
[ZLK+17] could be improved. On the other hand, only
empirical knowledge about the choice of λ is available
while there is little disciplined understanding. In contrast,
Algorithm 1 does not depend on any parameter tuning
and guarantees recovery once the working conditions
are met.

6 CONCLUSION

At last, we would love to provide some comments about
the results and proof strategy presented in this paper,
and to discuss the possibility of some future directions.

This paper casts the sparse blind deconvolution
problem as finding a sparse vector near a subspace and
studies its optimization landscape. We prove that the
geometric property that any local solution is close to a shift-
truncation of the ground truth kernel holds on a sub-level
set of the sphere. This holds even when the observation
contains densely overlapping copies of the true kernel. In
addition, we propose a simple initialization scheme that
any proceeding descent algorithm escapes strict saddles
can recover the local minimum.

The current proof strategy presented in this paper
depends heavily on an accurate estimation of the sta-
tionary point, which is only attainable in part of the

9. Note that the x-axis is indexed with overlapping ratio k · θ,
which indicates how many times the kernel a0 present in a k-length
window of y on average.
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Fig. 3: Average of Parameters σmin, κ, and µ of a random unit norm kernel a0 over 50 independent trials,
as a function of dimension k.
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Kernel of Algorithm 1.

Fig. 5: Recovery Error of the Ground Truth
Kernel with Algorithm 1 finding a shift
truncated kernel and the annealing Lasso
problem recovering the ground truth kernel.

sphere, which also sets the sparsity level of the proposed
algorithm. It would be exciting if a novel proof strategy
could be developed to show a global result, which would
potentially solve several other important nonconvex
problems, including over-complete dictionary learning,
tensor decomposition.

APPENDIX

In the appendix, Appendix A contains some basic
lemmas for quantities used repeatedly; Appendix B
presents the proofs of the main theorem and corollary
of this paper. Appendix C and Appendix D proves for
lemmas around the initialization point qinit and the pre-
conditioning term Y TY (or AT

0A0) respectively. Finite

Fig. 6: Recovery Error of the Ground Truth
Kernel by minimizing the Lasso objective
function recovering both the shift truncated
kernel as well as the ground truth kernel.

sample concentration for the Riemannian gradient and
Hessian are presented in Appendix E and Appendix F
respectively.

APPENDIX A
BASICS

Lemma A.1 (Expectation of the Approximate Objective
Function). Assuming x0 ∼i.i.d. BG (θ) ∈ Rm, then

Ex0

[
1

m

∥∥∥∥Y T
(
A0A

T
0

)−1/2
q

∥∥∥∥4

4

]
= 3θ (1− θ)

∥∥∥ATq
∥∥∥4

4
+ 3θ2

∥∥∥ATq
∥∥∥4

2
. (108)

Proof. Let g ∈ R2k−1 be a standard random Gaussian
vector and PI be the projection operator onto Bernoulli
vector I ∼ Ber(θ) Then any column xi ∈ R2k−1 ofX0 is
equal in distribution to xi = PIg with g ∼i.i.d. N (0, 1).

Ex0

[
1

m

∥∥∥∥Y T
(
A0A

T
0

)−1/2
q

∥∥∥∥4

4

]
=

1

m
EIEg

∥∥∥qTAX0

∥∥∥4

4
(109)

= EIEg
∥∥∥qTAxi∥∥∥4

4
(110)

= EIEg
(
qTAPIg

)4
(111)
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Fig. 7: Average of Parameters σmin, κ, and µ of a band-pass unit norm kernel a0 over 50 independent trials,
as a function of dimension k.

= 3EI
(
qTAPIA

Tq
)2

(112)

= 3EI

∑
i∈I
〈ai, q〉4 +

∑
{i6=j}∈I

〈ai, q〉2 〈aj , q〉2
 (113)

= 3θ (1− θ)
∥∥∥ATq

∥∥∥4

4
+ 3θ2

∥∥∥ATq
∥∥∥4

2
(114)

Lemma A.2 (Root Estimation for Cubic Gradient Func-
tion). Consider an equation of the form

f (x) = x
(
α− x2

)
− β = 0, (115)

with α > 0. Suppose that β < 1
4α

3/2. Then f (x) = 0 has
three solutions, x1, x2, x3 satisfying

max
{∣∣x1 −

√
α
∣∣ , ∣∣x2 +

√
α
∣∣ , |x3|

}
≤ 2β

α
. (116)

Proof. Suppose first that β > 0. Then f (0) < 0. More-
over,

f
(

2β
α

)
= 2β − 8β3/α3 − β (117)

= β
(
1− 8β2/α3

)
(118)

> 0. (119)

Hence, f has at least one root in the interval
[
0, 2β

α

]
.

Similarly, notice that f (
√
α) < 0 and that

f
(√

α− 2β
α

)
= α3/2 − 2β −

(√
α− 2β/α

)3 − β (120)

= α3/2 − 3β − α3/2 + 6β − 12β2/α3/2 + 8β3/α3

(121)

= β

(
3− 12β

α3/2
+

8β2

α3

)
(122)

> 0. (123)

Thus, there is at least one root in the inter-
val

[√
α− 2β

α ,
√
α
]
. Finally, note that f (−

√
α) < 0,

df
dx (−

√
α) = −2α, and d2f

dx2 (x′) = −3x′ is positive for
x′ ≤ −

√
α. Hence, convexity gives that

f
(
−
√
α− 2β

α

)
≥ f

(
−
√
α
)

+
df

dx

(
−
√
α
)
× (−2β/α) (124)

= −β + (−2α)× (−2β/α) (125)
= 3β > 0. (126)

Under this condition, there is at least one root in the
interval, [−

√
α− 2β/α,−

√
α]. These three intervals do

not overlap, as long as 4β
α <

√
α, or β < 1

4α
3/2.

In the case that β ≤ 0, a symmetric argument applies.
Thus there are exactly three solutions to equation (115)
in the specified intervals.

Lemma A.3. Let al and al′ be two nonzero vectors with
inner product µl,l′

.
= 〈al,al′〉. Then for any unit vector

v ∈ span (al,al′),∣∣∣∣〈 al
‖al‖2

,v

〉∣∣∣∣2 +

∣∣∣∣〈 al′

‖al′‖2
,v

〉∣∣∣∣2 ≥ 1− |µl,l′ |
‖al‖2 ‖al′‖2

.

(127)

Proof. Let u and u⊥ be two orthogonal unit vectors, such
that

al = ‖al‖2 u, (128)

al′ =
µl,l′

‖al‖2
u+

√√√√‖al′‖22 − µ2
l,l′

‖al‖22
u⊥. (129)

Suppose v = au + bu⊥ with a2 + b2 = 1. Let µrel =
µl,l′

‖al‖2‖al′‖2
, then we can expand the quantity of interests

as∣∣∣∣〈 al
‖al‖2

,v

〉∣∣∣∣2 +

∣∣∣∣〈 al′

‖al′‖2
,v

〉∣∣∣∣2
=
∣∣∣〈u, au+ bu⊥

〉∣∣∣2
+

∣∣∣∣〈µrelu+
√

1− µ2
relu

⊥, au+ bu⊥
〉∣∣∣∣2 (130)
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= a2 +

(
aµrel + b

√
1− µ2

rel

)2

(131)

= a2 + b2 +
(
a2 − b2

)
µ2

rel + 2abµrel

√
1− µ2

rel (132)

= 1 +
[
a2 − b2, 2ab

] [
µ2

rel, µrel

√
1− µ2

rel

]T
(133)

Since
[
a2 − b2, 2ab

]
is a unit vector, then above equation

is lower bounded by

1−
∥∥∥∥[µ2

rel, µrel

√
1− µ2

rel

]∥∥∥∥
2

= 1− |µrel| (134)

= 1− |µl,l′ |
‖al‖2 ‖al′‖2

(135)

as claimed.

Lemma A.4 (Nonzeros in a Bernoulli Vector). Let v ∼i.i.d.

Ber (θ) ∈ Rn, then

P [‖v‖0 ≥ (1 + t) θn] ≤ 2 exp

(
− 3t2

2t+ 6
θn

)
. (136)

Proof. As ‖v‖0 = v0 + · · ·+ vn−1, and

|vi − θ| ≤ 1, E
[
(vi − θ)2

]
= θ (1− θ) ≤ θ (137)

with Bernstein’s inequality, we obtain that

P [‖v‖0 ≥ (1 + t) θn]

≤ 2 exp

(
− t2θ2n2

2 (θ − θ2)n+ 2
3 tθn

)
(138)

≤ 2 exp

(
− 3t2

2t+ 6
θn

)
, (139)

as claimed.

Lemma A.5 (Entry-wise Truncation of a Bernoulli Gaus-
sian Vector). Suppose x0 ∼i.i.d. BG (θ) ∈ Rm, then

P [‖x0‖∞ > t] ≤ 2θme−t
2/2. (140)

Proof. A Bernoulli-Gaussian variable x = ω · g satisfies

P [|x| ≥ t] = θ · P [|g| ≥ t] ≤ 2θe−t
2/2, (141)

Taking a union bound over them entries of x0, we obtain

P [‖x0‖∞ > t] ≤ mP [|x| > t] (142)

≤ 2θme−t
2/2, (143)

as claimed.

Lemma A.6 (Operator Norm of a Bernoulli Gaussian
Circulant Matrix). Let Cx0

∈ Rm×m be the circulant
matrix generated from x0 ∼i.i.d. BG (θ) ∈ Rm, then

P [‖Cx0
‖2 ≥ t] ≤ 2m exp

(
− t2

2θm+ 2t

)
. (144)

Proof. The operator norm of a circulant matrix is

‖Cx0
‖2 = max

l
|〈x0,wl〉| , (145)

where wl is the l-th (discrete) Fourier basis vector

wl =
[
1, el

2πj
m , · · · , el(m−1) 2πj

m

]T
, l = 0, · · · ,m− 1,

(146)
and j is the imaginary unit. With moment control
Bernstein inequality, we obtain

P [|〈x0,wl〉| ≥ t] ≤ 2 exp

(
− t2

2θ ‖wl‖22 + 2 ‖wl‖∞ t

)

≤ 2 exp

(
− t2

2θm+ 2t

)
(147)

together with the union bound,

P [‖Cx0
‖2 ≥ t] ≤ mP [|〈x0,wl〉| ≥ t] (148)

≤ 2m exp

(
− t2

2θm+ 2t

)
, (149)

as claimed.

Lemma A.7 (Norms of η and η̄). Suppose δ =∥∥ 1
θmX0X

T
0 − I

∥∥
2
≤ 1/

(
2κ2

)
, then vectors η =

Y T
(
Y Y T

)−1/2
q and η̄ = Y T

(
θmA0A

T
0

)−1/2
q satisfy

‖η‖∞ ≤
(

1 +
4κ3δ

σmin

)(
2k

θm

)1/2

‖x0‖∞ , (150)

‖η̄‖∞ ≤
(

2k

θm

)1/2

‖x0‖∞ , (151)

‖η‖66 ≤
(

1 +
4κ3δ

σmin

)4
4k2

θ2m2
‖x0‖4∞ , (152)

‖η̄‖2 ≤ 1 + δ/2, (153)

‖η − η̄‖∞ ≤
4κ3δ

σmin

(
2k

θm

)1/2

‖x0‖∞ , (154)

‖η − η̄‖2 ≤ (1 + δ/2)
4κ3δ

σmin
. (155)

Proof. Since δ =
∥∥ 1
θmX0X

T
0 − I

∥∥
2
, then

‖X0‖2 ≤ (θm)
1/2
√

1 + δ (156)

≤ (θm)
1/2

(1 + δ/2) . (157)

As η = Y T
(
Y Y T

)−1/2
q = XT

0 A
T
0

(
Y Y T

)−1/2
q,

together with Lemma D.3, we have∥∥∥∥AT
0

(
Y Y T

)−1/2
q

∥∥∥∥
∞

≤
∥∥∥∥AT

0

(
Y Y T

)−1/2
q

∥∥∥∥
2

(158)

≤
∥∥∥∥AT

0

((
Y Y T

)−1/2
−
(
θmA0A

T
0

)−1/2
)
q

∥∥∥∥
2

+

∥∥∥∥AT
0

(
θmA0A

T
0

)−1/2
q

∥∥∥∥
2

(159)

≤ (θm)
−1/2 4κ3δ

σmin
‖q‖2 + (θm)

−1/2
∥∥∥ATq

∥∥∥
2

(160)

≤ (θm)
−1/2

(
1 +

4κ3δ

σmin

)
(161)
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Norms of η. Since ‖X0el‖2 ≤
√

2k − 1 ‖X0el‖∞, we
have

‖η‖∞ = max
l∈[1,··· ,m]

〈
X0el,A

T
0

(
Y Y T

)−1/2
q

〉
(162)

≤ max
l
‖X0el‖2

∥∥∥∥AT
0

(
Y Y T

)−1/2
q

∥∥∥∥
2

(163)

≤
√

2k ‖x0‖∞ · (θm)
−1/2

(
1 +

4κ3δ

σmin

)
. (164)

At the same time, plugging in ‖η‖2 = 1, we have

‖η‖66 ≤ ‖η‖
2
2 ‖η‖

4
∞ ≤

(
1 +

4κ3δ

σmin

)4
4k2

θ2m2
‖x0‖4∞ .

(165)
Norms of η̄. Here, η̄ = Y T

(
θmA0A

T
0

)−1/2
q =

XT
0 A

T
0

(
θmA0A

T
0

)−1/2
q with∥∥∥∥AT

0

(
θmA0A

T
0

)−1/2
q

∥∥∥∥
∞

≤
∥∥∥∥AT

0

(
θmA0A

T
0

)−1/2
q

∥∥∥∥
2

(166)

= (θm)
−1/2

, (167)

therefore

‖η̄‖∞ ≤ max
l
‖X0el‖2

∥∥∥∥A0

(
θmA0A

T
0

)−1/2
q

∥∥∥∥
2

≤
(

2k

θm

)1/2

‖x0‖∞ , (168)

‖η̄‖2 ≤
∥∥∥XT

0

∥∥∥
2

∥∥∥∥A0

(
θmA0A

T
0

)−1/2
q

∥∥∥∥
2

≤ 1 + δ/2. (169)

Norms of η − η̄. With similar reasoning, we can obtain

‖η − η̄‖∞

=

∥∥∥∥Y T
(
Y Y T

)−1/2
q − Y T

(
θmA0A

T
0

)−1/2
q

∥∥∥∥
∞

≤ max
l∈[1,··· ,m]

‖X0el‖2 (θm)
−1/2×∥∥∥∥∥AT

0

(
1

θm
Y Y T

)−1/2

−AT
0

(
A0A

T
0

)−1/2
∥∥∥∥∥

2

(170)

≤ 4κ3δ

σmin

(
2k

θm

)1/2

‖x0‖∞ , (171)

and

‖η − η̄‖2
≤ ‖X0‖2 (θm)

−1/2 ‖q‖2×∥∥∥∥∥AT
0

(
1

θm
Y Y T

)−1/2

−AT
0

(
A0A

T
0

)−1/2
∥∥∥∥∥

2

(172)

≤ (θm)
−1/2 4κ3δ

σmin
‖X0‖2 (173)

≤ (1 + δ/2)
4κ3δ

σmin
, (174)

completing the proof.

APPENDIX B
PROOF OF THE MAIN THEOREM AND COROL-
LARY

B.1 Proof of the Main Theorem

Lemma B.1. If following inequalities hold∥∥∥∥grad[ψ] (q)− 3 (1− θ)
θm2

grad[ϕ] (q)

∥∥∥∥
2

≤ 3c?
2κ2

1− θ
θm2

∥∥∥ATq
∥∥∥6

4
, (175)∥∥∥∥Hess[ψ] (q)− 3 (1− θ)

θm2
Hess[ϕ] (q)

∥∥∥∥
2

≤ 3
(
1− 6c? − 36c2? − 24c3?

) 1− θ
θm2

∥∥∥ATq
∥∥∥4

4
. (176)

for all q ∈ R2C? with C? ≥ 10 and c? = 1/C?, then any
local minimum q̄ of ψ (q) in R2C? satisfies |〈q̄,PS [al]〉| ≥
1− 2c?κ

−2 for some index l.

Proof. Let

δgrad = grad[ψ] (q)− 3 (1− θ)
θm2

grad[ϕ] (q) , (177)

and

δ̄grad =
θm2

3 (1− θ)
δgrad, (178)

then at any stationary point of ψ (q), we have

0 = AT grad[ψ] (q) (179)

=
3 (1− θ)
θm2

AT grad[ϕ] (q) +AT δgrad. (180)

Hence for any index i, following equality always holds

0 = ‖ai‖22 ζ
3
i +

∑
j 6=i
〈ai,aj〉 ζ3

j − ζi ‖ζ‖
4
4 +

〈
ai, δ̄grad

〉
⇒ 0 = ζ3

i − ζi
‖ζ‖44
‖ai‖22︸ ︷︷ ︸
αi

+

∑
j 6=i 〈ai,aj〉 ζ3

j +
〈
ai, δ̄grad

〉
‖ai‖22︸ ︷︷ ︸
β′i

(181)

with ζ = ATq. Under the assumption that∥∥∥∥grad[ψ] (q)− 3 (1− θ)
θm2

grad[ϕ] (q)

∥∥∥∥
2

≤ 3c?
2κ2

1− θ
θm2

‖ζ‖64 ,
(182)

the perturbed part can be bounded via∣∣〈ai, δ̄grad

〉∣∣ ≤ ‖ai‖2 ∥∥δ̄grad

∥∥
2
≤ c?

2κ2
‖ai‖2 ‖ζ‖

6
4 ,

(183)
and also

β′i

α
3/2
i

≤
µ ‖ζ‖33 + 1

2c?κ
−2 ‖ζ‖64

‖ζ‖64
≤ c?κ−2 ≤ 1

4
. (184)

Then by Lemma A.2, at every stationary point q̄, the i-th
entry of ζ resides in the set

⋃
x∈{0,±√αi}[x−

2β′i
αi
, x+

2β′i
αi

]
– i.e., ζ is nearly a trinary vector.
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Moreover, we can characterize the curvature of critical
points in terms of the number of large entries of ζ. Indeed,
whenever ζ has at least two entries in⋃

x∈{±√αi}

[
x− 2β′i

αi
, x+

2β′i
αi

]
,

using (88), there exists a direction of strict negative
curvature, provided

Hess[ψ] (q) ≺ 3 (1− θ)
θm2

Hess[ϕ] (q)

+ 3 (2− 11c?)
1− θ
θm2

‖ζ‖44 I. (185)

Similarly, whenever ζ has only one entry in⋃
x∈{±√αi}

[
x− 2β′i

αi
, x+

2β′i
αi

]
,

using (71), we have that Hess[ψ](q) � 0, provided

Hess[ψ] (q) � 3 (1− θ)
θm2

Hess[ϕ] (q)

−3
(
1− 6c? − 36c2? − 24c3?

) 1− θ
θm2

‖ζ‖44 I.
(186)

When C? ≥ 10 and c? ≤ 0.1, we have 2 − 11c? > 1 −
6c?−36c2?−24c3? ≥ 0.016, and so above characterization
obtains.

Theorem B.2 (Main Result). Assume the observation
y ∈ Rm is the cyclic convolution of a0 ∈ Rk and
x0 ∼i.i.d. BG (θ) ∈ Rm, where the convolution matrix
A0 ∈ Rk×(2k−1) has minimum singular value σmin > 0 and
condition number κ ≥ 1, and A has column coherence µ. If

m ≥ C
min

{
(2C?µ)

−1
, κ2k2

}
(1− θ)2

σ2
min

κ8k4 log3 (κk) (187)

and θ ≥ log k/k, then with probability no smaller than
1− exp (−k)− θ2 (1− θ)2

k−4− 2 exp (−θk)− 48k−7−
48m−5 − 24k exp

(
− 1

144 min
{
k, 3
√
θm
})

, any local min-

imum q̄ of ψ in R̂2C? satisfies |〈q̄,PS [aτ ]〉| ≥ 1 − c?κ−2

for some integer τ .

Proof. From the concentration analysis for the Rieman-
nian gradient (Lemma 4.2) and Hessian (Lemma 4.3),
if

m ≥ C
min

{
(2C?µ)

−1
, κ2k2

}
(1− θ)2

σ2
min

κ8k4 log3 (κk) , (188)

then with probability no smaller than
1 − exp (−k) − θ2 (1− θ)2

k−4 − 2 exp (−θk) −
24k exp

(
− 1

144 min
{
k, 3
√
θm
})
− 48k−7 − 48m−5,∥∥∥∥grad[ψ] (q)− 3 (1− θ)

θm2
grad[ϕ] (q)

∥∥∥∥
2

≤ 3c?
2κ2

1− θ
θm2

∥∥∥ATq
∥∥∥6

4
, (189)

∥∥∥∥Hess[ψ] (q)− 3 (1− θ)
θm2

Hess[ϕ] (q)

∥∥∥∥
2

≤ 3
(
1− 6c? − 36c2? − 24c3?

) 1− θ
θm2

∥∥∥ATq
∥∥∥4

4
. (190)

hold for all q ∈ R̂2C? with C? ≥ 10 and c? = 1/C?.
Therefore, by Lemma 4.1 any local minimum q̄ of ψ (q)
in R2C? satisfies |〈q̄,PS [al]〉| ≥ 1 − 2c?κ

−2 for some
index l.

B.2 Proof of the Main Corollary
Corollary B.3. Suppose the ground truth kernel a0 has
preconditioned shift coherence 0 ≤ µ ≤ 1

8×48 log−3/2 (k)
and sparse coefficient x0 ∼i.i.d. BG (θ) ∈ Rm. there exist
positive constants C ≥ 25604 and C ′ such that whenever the
sparsity level

64k−1 log k ≤ θ ≤ min
{

1
482µ

−2k−1 log−2 k, (191)(
1
4 −

640
C1/4

) (
3C?µκ

2
)−2/3

k−1
(
1 + 36µ2k log k

)−2 }
,

and signal length

m ≥ max
{
Cθ2σ−2

minκ
6k3

(
1 + 36µ2k log k

)4
log (κk) ,

(192)

C ′ (1− θ)−2
σ−2

min min
{
µ−1, κ2k2

}
κ8k4 log3 (κk)

}
,

then Algorithm 1 recovers ā such that

‖ā± PS [ιksτ [ã0]]‖2 ≤ 4
√
c? + ck−1 (193)

for some integer shift τ ∈ [− (k − 1) , k − 1] with
probability no smaller than 1 − k−1 − 8k−2 −
exp (−k) − θ2 (1− θ)2

k−4 − 2 exp (−θk) −
24k exp

(
− 1

144 min
{
k, 3
√
θm
})
− 48k−7 − 48m−5.

Proof. From the concentration results for the Riemannian
gradient, at every point q ∈ R̂2C? , the objective value of
ψ (q) satisfies∣∣∣∣ψ (q)− 3 (1− θ)

θm2
ϕ (q) +

3

4m2

∣∣∣∣
≤

∣∣∣∣∣∣∣
∥∥∥Y T

(
Y Y T

)−1/2
q
∥∥∥4

4

4m
−

3 (1− θ) ‖ζ‖44
4θm2

− 3

4m2

∣∣∣∣∣∣∣
(194)

≤
∣∣∣∣∣
〈
q,

(
Y Y T

)−1/2
Y η◦3

4m
− 3 (1− θ)

4θm2
Aζ◦3− 3

4m2
q

〉∣∣∣∣∣
(195)

≤
∥∥∥∥∥
(
Y Y T

)−1/2
Y η◦3

4m
− 3 (1− θ)

4θm2
Aζ◦3 − 3

4m2
q

∥∥∥∥∥
2
(196)

≤ 1

4m

∥∥∥∥(Y Y T
)−1/2

Y η◦3−
(
θmA0A

T
0

)−1/2
Y η◦3

∥∥∥∥
2

+
1

4θ1/2m3/2

∥∥∥∥(A0A
T
0

)−1/2
Y
(
η◦3 − η̄◦3

)∥∥∥∥
2

+
∥∥∥ 1

4θ1/2m3/2

(
A0A

T
0

)−1/2
Y η̄◦3
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− 3 (1− θ)
4θm2

Aζ◦3− 3

4m2
q
∥∥∥

2
(197)

≤ 3c?
8κ2

1− θ
θm2

min
q∈R̂2C?

∥∥∥ATq
∥∥∥6

4
(198)

with probability no smaller than 1 − 2 exp (−θk) −
24k exp

(
− 1

144 min
{
k, 3
√
θm
})
− 48k−7− 48m−5. The

last inequality is derived with similar arguments in
Lemma 4.2, for simplicity, we do not present them
here. Moreover, with Lemma C.1, we can obtain an
initialization point qinit such that∥∥∥ATqinit

∥∥∥4

4
≥
(
3C?µκ

2
)2/3

(199)

≥
(
2C?µκ

2
)2/3

+ µ/2. (200)

Consider any descent method for ψ, which generates a
sequence of iterates q(0) = qinit, q

(1), . . . , q(k), . . . such
that ψ(q(k)) is non-increasing with k. Then

ψ
(
q(k)

)
≤ ψ (qinit) (201)

≤ 3 (1− θ)
θm2

ϕ (qinit) +
3

4m2

+
3c?
8κ2

1− θ
θm2

min
q∈R̂2C?

∥∥∥ATq
∥∥∥6

4
. (202)

On the other hand, the finite sample objective function
value ψ is close to that of 3(1−θ)

θm2 ϕ (q)− 3
4m2 ,

3 (1− θ)
θm2

ϕ
(
q(k)

)
≤ ψ

(
q(k)

)
+

3

4m2
+

3c?
8κ2

1− θ
θm2

min
q∈R̂2C?

∥∥∥ATq
∥∥∥6

4

(203)

≤ 3 (1− θ)
θm2

ϕ (qinit) +
3c?
4κ2

1− θ
θm2

min
q∈R̂2C?

∥∥∥ATq
∥∥∥6

4
,

(204)

Therefore, we obtain that

ϕ
(
q(k)

)
≤ ϕ (qinit) +

µ

2
(205)

≤ ϕ (qinit) +
c?

4κ2
min

q∈R̂2C?

∥∥∥ATq
∥∥∥6

4
, (206)

which implies that q(k) ∈ R̂2C? always holds. At last,
Theorem B.2 says that any local minimum q̄ is close to
±ai for some i, in the sense that

|〈q̄,PS [ai]〉| ≥ 1− c?κ−2. (207)

Write 1
θmY Y

T = A0 (I + ∆)AT
0 with ‖∆‖2 ≤ δ,

and let

q̄ = ± ai
‖ai‖2

+

√
2

(
1−

∣∣∣∣〈q̄, ai
‖ai‖2

〉∣∣∣∣)δ, (208)

with ‖δ‖2 = 1. Since

ai =
(
A0A

T
0

)−1/2
ι∗ks−(k−i)[ã0], (209)

we have(
Y Y T

θm

)1/2

q̄

= ±
(
Y Y T

θm

)1/2
[
ai
‖ai‖2

+

√
2

(
1−
∣∣∣∣〈q̄, ai

‖ai‖2

〉∣∣∣∣)δ
]

(210)

= ±
(
Y Y T

θm

)1/2(
A0A

T
0

)−1/2 ι∗ks−(k−i)[ã0]

‖ai‖2

+

√
2

(
1−

∣∣∣∣〈q̄, ai
‖ai‖2

〉∣∣∣∣)(Y Y T

θm

)1/2

δ (211)

therefore the error can be bounded as

∥∥∥∥∥
(
Y Y T

θm

)1/2

q̄ ±
ι∗ks−(k−i)[ã0]

‖ai‖2

∥∥∥∥∥
2

≤
∥∥∥∥∥
(
Y Y T

θm

)1/2(
A0A

T
0

)−1/2
− I

∥∥∥∥∥
2

∥∥∥∥ι∗ks−(k−i)[ã0]

‖ai‖2

∥∥∥∥
2

+

√
2

(
1−

∣∣∣∣〈q̄, ai
‖ai‖2

〉∣∣∣∣)
∥∥∥∥∥
(
Y Y T

θm

)1/2
∥∥∥∥∥

2

. (212)

Finally, using the fact that for any nonzero vectors u
and v that 〈u,v〉 ≥ 0,∥∥∥∥ u

‖u‖2
− v

‖v‖2

∥∥∥∥
2

≤
√

2

‖v‖2
‖u− v‖2 (213)

always holds. Therefore,

‖ā± PS [ιksi[ã0]]‖2

=

∥∥∥∥PS

[(
Y Y T

)1/2
q̄

]
± PS [ιksi[ã0]]

∥∥∥∥
2

(214)

≤
√

2 ‖ai‖2
‖ι∗ksi−k[ã0]‖2

∥∥∥∥∥
(
Y Y T

θm

)1/2

q̄ ± ι
∗
ksi−k[ã0]

‖ai‖2

∥∥∥∥∥
2
(215)

≤ κ
√

2 (1 + δ)

(
1−

∣∣∣∣〈q̄, ai
‖ai‖2

〉∣∣∣∣) (216)

+
√

2κ

∥∥∥∥∥
(
Y Y T

θm

)1/2 (
A0A

T
0

)−1/2
− I

∥∥∥∥∥
2

≤ 2κ

√
2

(
1−

∣∣∣∣〈q̄, ai
‖ai‖2

〉∣∣∣∣)+
√

2κ3δ/σmin (217)

(Lemma D.2)

≤ 4
√
c? + 10

√
2κ3σ−1

min

√
k logm/m (218)

≤ 4
√
c? + ck−1, (219)

completing the proof.
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APPENDIX C
INITIALIZATION

Lemma C.1. Suppose x0 ∼i.i.d. BG (θ) ∈ Rm. There exists
a positive constant C > 25604 such that whenever

m ≥ Cθ2σ−2
minκ

6k3
(
1 + 36µ2k log k

)4
log (κk/σmin)

(220)
and the sparsity rate

64k−1 log k ≤ θ ≤ min
{

1
482µ

−2k−1 log−2 k, (221)(
1
4 −

640
C1/4

) (
3C?µκ

2
)−2/3

k−1
(
1 + 36µ2k log k

)−2 }
,

then the initialization qinit = PS

[(
Y Y T

)−1/2
yi
]

satisfies∥∥∥ATqinit

∥∥∥6

4
≥ 3C?µκ

2, (222)

namely qinit ∈ R̂3C? , with probability no smaller than
1 − k−1 − 8k−2 − 2 exp (−θk) − 48k−7 − 48m−5 −
24k exp

(
− 1

144 min
{
k, 3
√
θm
})

.

Proof. Since

m ≥ C θ2

σ2
min

κ6k3
(
1 + 36µ2k log k

)4
log (κk/σmin) ,

(223)

then from Lemma D.1, with probability no smaller
than 1−2 exp (−θk)−24k exp

(
− 1

144 min
{
k, 3
√
θm
})
−

48k−7 − 48m−5, we obtain

δ
.
=

∥∥∥∥ 1

θm
X0X

T
0 − I

∥∥∥∥
2

(224)

≤ 10
√
k logm/m (225)

≤ 10σmin

θκ3k (1 + 36µ2k log k)
2×√√√√ log

(
Cκ6k3(1+36µ2k log k)4

σ2
min

log
(
κk
σmin

))
C log (κk/σmin)

(226)

≤ 20σmin

C1/4θκ3k (1 + 36µ2k log k)
2 (227)

as long as C ≥ 1000. The last inequality holds because

Cσ−2
minκ

6k3
(
1 + 36µ2k log k

)4
log (κk/σmin)

≤ 374C (κk/σmin)
7

log5 (κk/σmin) (228)

≤ 374C (κk/σmin)
12 (229)

or √√√√ log
(
Cκ6k3(1+36µ2k log k)4

σ2
min

log
(
κk
σmin

))
C log (κk/σmin)

≤

√
log (374C) + 12 log (κk/σmin)

C log (κk/σmin)
(230)

≤
√

log 2√
C log (κk/σmin)

+
12

C
(231)

≤ 2

C1/4
(k ≥ 2, C ≥ 16) (232)

Moreover, κ2δ ≤ 1/2 always holds provided

C ≥
(

40

θk (1 + 36µ2k log k)
2

)4

. (233)

Notice that because θ is lower bounded by c log k/k,
the right hand side is indeed bounded by an absolute
constant.

Set ζinit = ATqinit and ζ̂init = PS
[
ATAxi

]
. Then

using for any nonzero vectors u and v,∥∥∥∥ u

‖u‖2
− v

‖v‖2

∥∥∥∥
2

≤ 2

‖v‖2
‖u− v‖2 , (234)

we have that∥∥∥ζinit − ζ̂init

∥∥∥
2

=

∥∥∥∥ATPS

[(
Y Y T

)−1/2
A0xi

]
− PS

[
ATAxi

]∥∥∥∥
2

(235)

=

∥∥∥∥∥∥∥
AT

(
1
θmY Y

T
)−1/2

A0xi∥∥∥( 1
θmY Y

T
)−1/2

A0xi

∥∥∥
2

− ATAxi
‖ATAxi‖2

∥∥∥∥∥∥∥
2

(236)

≤ 2

‖Axi‖2

∥∥∥∥∥
(

1

θm
Y Y T

)−1/2

A0xi −Axi

∥∥∥∥∥
2

(237)

≤ 2 ‖A0‖2

∥∥∥∥∥
(

1

θm
Y Y T

)−1/2

−
(
A0A

T
0

)−1/2
∥∥∥∥∥

2
(238)

≤ 8κ3δ

σmin
, (239)

where we have used Lemma D.3 in the final bound.
Since ‖·‖44 is convex, ‖ζinit‖44 can be lower bounded

via

‖ζinit‖44 ≥
∥∥∥ζ̂init

∥∥∥4

4
+ 4

〈
ζ̂◦3init, ζinit − ζ̂init

〉
(240)

≥
∥∥∥ζ̂init

∥∥∥4

4
− 4

∥∥∥ζinit − ζ̂init

∥∥∥
2

(241)

≥
∥∥∥ζ̂init

∥∥∥4

4
− 32κ3δ

σmin
. (242)

Let I = supp (xi), then the vector ζ̂init = PS
[
ATAxi

]
is

composed of |I| large components and small components
on the off-support Ic of xi.

C.0.0.1 Dense Component of ζ̂init: Note
that

∥∥∥(ATA
)
Ic,I

xi

∥∥∥
2
≤

∥∥offdiag
(
ATA

)
xi
∥∥

2
with∥∥offdiag

(
ATA

)∥∥
∞ ≤ µ. We have

E
[
offdiag

(
ATA

)
xi
]

= 0 (243)

E
[∣∣∣eTj offdiag

(
ATA

)
xi

∣∣∣2] = θ
∥∥∥eTj offdiag

(
ATA

)∥∥∥2

2

≤ µ2θk (244)
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With Bernstein’s Inequality, the summation of moment-
bounded independent random variables can be con-
trolled via

P
[∣∣∣eTj offdiag

(
ATA

)
xi

∣∣∣ ≥ µt] ≤ 2 exp

(
− t2

2θk + 2t

)
(245)

and via union bound

P
[∥∥∥offdiag

(
ATA

)
xi

∥∥∥2

2
≥ 2k (µt)

2
]
≤ 4k exp

(
− t2

2θk + 2t

)
(246)

Therefore, setting t2 = 9θk log k, we obtain∥∥∥offdiag
(
ATA

)
xi

∥∥∥2

2
≤ 18µ2θk2 log k (247)

with failure probability bounded by

4k exp

(
− 9θk log k

2θk + 2
√

9θk log k

)

= 4k exp

− 9 log k

2 + 6
√

(θk)
−1

log k

 (248)

≤ 4k−2 (249)

The last inequality is derived under the assumption
(θk)

−1
log k ≤ 1

64 .
C.0.0.2 Spiky Component of ζ̂init: On the other

hand,

E
[∥∥∥diag

(
ATA

)
xi

∥∥∥2

2

]
= θ

∥∥∥diag
(
ATA

)∥∥∥2

F
(250)

= θk. (251)

For diag
(
ATA

)
xi, applying the moment control Bern-

stein Inequality, we have

P
[∣∣∣∣∥∥∥diag

(
ATA

)
xi

∥∥∥2

2
− E [·]

∣∣∣∣ ≥ t] ≤ 2 exp

(
− t2

2θk + 2t

)
.

(252)
By setting t = 2

√
θk log k, we obtain that with probabil-

ity no smaller than 1− k−1,∥∥∥diag
(
ATA

)
xi

∥∥∥2

2
≥ θk − 2

√
θk log k. (253)

Denote the following events for the entry-wise mag-
nitude

Ej =
{
|eTj offdiag(ATA)xi| ≤ µt

}
, (254)

and for the support size

Esupp = {‖xi‖0 ≤ 4θk} . (255)

On their intersection Esupp ∩
⋂2k
j=1 Ej , we have∥∥∥offdiag(ATA)I,Ixi

∥∥∥2

2
≤ 4θk(µt)2. (256)

The the failure probability can be bounded from the
union bound as

P
[∥∥∥offdiag(ATA)I,Ixi

∥∥∥2

2
≥ 4θk(µt)2

]

≤ P

Esupp ∩
⋂
j

Ej

c  (257)

= P

 Ecsupp ∪
⋃
j

Ecj

 (258)

≤ P
[
Ecsupp

]
+
∑
j

P
[
Ecj
]

(259)

≤ exp(−θk) + 4k exp

(
− t2

2θk + 2t

)
. (260)

Therefore, by setting t2 = 9θk log k, we obtain∥∥∥∥offdiag
(
ATA

)
I,I
xi

∥∥∥∥2

2

≤ 36µ2θ2k2 log k (261)

with probability no smaller than 1− exp (−θk)− 8k−2.
Therefore, with probability no smaller than 1−k−1−

8k−2 − exp (−θk),∥∥∥diag
(
ATA

)
xi

∥∥∥2

2
≥ θk − 2

√
θk log k (262)∥∥∥∥offdiag

(
ATA

)
I,I
xi

∥∥∥∥2

2

≤ 36µ2θ2k2 log k (263)

and via Cauchy-Schwarz inequality, we obtain∥∥∥∥(ATA
)
I,I
xi

∥∥∥∥2

2

(264)

=

∥∥∥∥diag
(
ATA

)
xi + offdiag

(
ATA

)
I,I
xi

∥∥∥∥2

2

(265)

=
∥∥∥diag

(
ATA

)
xi

∥∥∥2

2
+

∥∥∥∥offdiag
(
ATA

)
I,I
xi

∥∥∥∥2

2

+ 2

〈
diag

(
ATA

)
xi, offdiag

(
ATA

)
I,I
xi

〉
(266)

≥
∥∥∥diag

(
ATA

)
xi

∥∥∥2

2

− 2
∥∥∥diag

(
ATA

)
xi

∥∥∥
2

∥∥∥∥offdiag
(
ATA

)
I,I
xi

∥∥∥∥
2

(267)

≥ θk
(

1− 2

√
(θk)

−1
log k − 12µ

√
θk log k

)
(268)

≥ θk/2. (269)

The last equation is derived by plugging in

(θk)
−1

log k ≤ 1
64 , µ2θk log k ≤ 1

482 (270)

under the assumption

64k−1 log k ≤ θ ≤ 1
482µ

−2k−1 log−1 k. (271)

C.0.0.3 Lower Bound of ‖·‖44: Since with proba-
bility no smaller than 1− 4k−2,

∥∥offdiag
(
ATA

)
xi
∥∥2

2
≤

36µ2θk2 log k obtains and the relative ‖·‖22 norm between
the flat entries to the spiky entries in ATAxi can be
bounded as∥∥∥(ATA

)
Ic,I

xi

∥∥∥2

2∥∥∥(ATA)I,I xi

∥∥∥2

2

≤
∥∥offdiag

(
ATA

)
xi
∥∥2

2∥∥∥(ATA)I,I xi

∥∥∥2

2

(272)
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≤ 36µ2k log k
.
= r. (273)

Since∥∥∥ζ̂init

∥∥∥4

4
=
∥∥∥PS

[
ATAxi

]∥∥∥4

4
(274)

=
1

‖ATAxi‖42

∥∥∥∥(ATA
)
Ic,I

xi

∥∥∥∥4

4

+
1

‖ATAxi‖42

∥∥∥∥(ATA
)
I,I
xi

∥∥∥∥4

4

(275)

≥ 1

‖ATAxi‖42

∥∥∥∥(ATA
)
I,I
xi

∥∥∥∥4

4

(276)

=

∥∥∥(ATA
)
I,I
xi

∥∥∥4

2

∥∥∥PS

[(
ATA

)
I,I
xi
]∥∥∥4

4∥∥∥(ATA)I,I xi + (ATA)Ic,I xi

∥∥∥4

2

(277)

≥ 1

(1 + r)
2

∥∥∥∥PS

[(
ATA

)
I,I
xi

]∥∥∥∥4

4

(278)

and with high probability 1 − exp (−θk) according to
Lemma A.4, PS

[(
ATA

)
I,I
xi
]

satisfies∥∥∥∥PS

[(
ATA

)
I,I
xi

]∥∥∥∥4

4

≥ 1

‖xi‖0
≥ 1

2θ (2k − 1)
, (279)

Together, we have

‖ζinit‖44 ≥
∥∥∥ζ̂init

∥∥∥4

4
− 32κ3δ

σmin
(280)

≥ 1

(1 + r)
2

∥∥∥∥PS

[(
ATA

)
I,I
xi

]∥∥∥∥4

4

− 640C−1/4

θk (1 + 36µ2k log k)
2 (281)

≥
(

1

4
− 640

C1/4

)
1

θk (1 + 36µ2k log k)
2 (282)

holds with probability no smaller than 1 − k−1 −
8k−2−2 exp (−θk)−24k exp

(
− 1

144 min
{
k, 3
√
θm
})
−

48k−7 − 48m−5. To make sure ‖ζinit‖64 ≥ 3C?µκ
2 as

desired, we require the sparsity to satisfy

θ ≤
(

1
4 −

640
C1/4

) (
3C?µκ

2
)−2/3

k−1
(
1 + 36µ2k log k

)−2
,

(283)
then the initialization qinit ∈ R̂3C? follows by Defini-
tion 2.1.

APPENDIX D
PRECONDITIONING

Lemma D.1. Suppose x0 ∼i.i.d. BG (θ) ∈ Rm, then
following inequality holds∥∥∥∥ 1

θm
X0X

T
0 − I

∥∥∥∥
2

≤ 10
√
k logm/m, (284)

with probability no smaller than 1 − 2 exp (−θk) −
24k exp

(
− 1

144 min
{
k, 3
√
θm
})
− 48k−7 − 48m−5.

Proof. Since∥∥∥∥ 1

θm
X0X

T
0 − I

∥∥∥∥
2

(285)

≤
∥∥∥∥diag

(
1

θm
X0X

T
0

)
− I

∥∥∥∥
2

+

∥∥∥∥offdiag

(
1

θm
X0X

T
0

)∥∥∥∥
2

,

which is bounded by δ with probability no smaller than
1 − εd − εo whenever the probability that each of the
terms is upper bounded by δ/2 satisfies

P
[∥∥∥∥diag

(
1

θm
X0X

T
0

)
− I

∥∥∥∥
2

≥ δ/2
]
≤ εd, (286)

P
[∥∥∥∥offdiag

(
1

θm
X0X

T
0

)
− I

∥∥∥∥
2

≥ δ/2
]
≤ εo. (287)

Diagonal of 1
θmX0X

T
0 . Note that diag

(
X0X

T
0

)
=

‖x0‖22 I , so∥∥∥∥diag

(
1

θm
X0X

T
0

)
− I

∥∥∥∥
2

=

∣∣∣∣ 1

θm
‖x0‖22 − 1

∣∣∣∣ . (288)

We calculate the moment for each summand of ‖x0‖22.
The summands can be seen as a χ2

1 random variable but
populated with probability θ, whence

Exi∼BG(θ)

[(
x2
i

)p]
= θ EXi∼χ2

1
[Xp

i ] (289)

= θ
Γ
(
p+ 1

2

)
Γ
(

1
2

) (290)

≤ θp! (2)
p

2
(291)

=
p!

2
σ2Rp−2. (292)

Apply Bernstein’s inequality for moment bounded ran-
dom variables (G.4) with R = 2, σ2 = 4θ, then

P
[∣∣∣∣ 1

m
‖x0‖22 − θ

∣∣∣∣ ≥ t] ≤ 2 exp

(
− mt2

8θ + 4t

)
. (293)

By taking t = 1
2θδ, we obtain

P
[∥∥∥∥diag

(
1

θm
X0X

T
0

)
− I

∥∥∥∥
2

≥ δ/2
]

≤ 2 exp

(
− θmδ2

32 + 8δ

)
(294)

≤ 2 exp

(
− 100θk logm

32 + 80
√
k logm/m

)
(295)

≤ 2 exp (−θk) . (296)

Off-diagonal of 1
θmX0X

T
0 . Note that offdiag

(
X0X

T
0

)
is a sub-circulant matrix generated by

rx0 = [rx0 (2k − 2) , · · · , 0, · · · , rx0 (2k − 2)]
T (297)

with rx0
(τ) = 〈x0, sτ [x0]〉 for τ = 1, · · · , 2k − 2.

Equivalently, we can write

rx0
= RT

x0
x0, (298)
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with

Rx0 = [s2k−2[x0], · · · ,0, · · · , s2k−2[x0]] ∈ Rm×(4k−3).
(299)

Operator norm of a circulant matrix is given by the
following∥∥∥∥offdiag

(
1

θm
X0X

T
0

)∥∥∥∥
2

= max
l=0,...,4k−4

∣∣∣∣〈vl, 1

θm
rx0

〉∣∣∣∣ ,
(300)

where vl is the l-th (discrete) Fourier basis vector

vl =
[
1, el

2πj
4k−3 , · · · , el(4k−4) 2πj

4k−3

]T
, (301)

and j is the imaginary unit. Let vl,τ = vl (2k − 2− τ) +
vl (2k − 2 + τ), then

〈vl, rx0
〉 =

2k−2∑
τ=1

vl,τ 〈x0, sτ [x0]〉 (302)

=
2k−2∑
τ=1

vl,τ

m−1∑
i=0

x0 (i)x0 ([i+ τ ]m) . (303)

By decoupling (Theorem 3.4.1 of [DlPG99]), the tail
probability of the weighted autocorrelation 〈vl, rx0

〉 can
be upper bounded via

P [|〈vl, rx0
〉| > t]

= P

[∣∣∣∣∣
2k−2∑
τ=1

vl,τ 〈x0, sτ [x0]〉
∣∣∣∣∣ > t

]
(304)

≤ 6P

[∣∣∣∣∣
2k−2∑
τ=1

vl,τ 〈x0, sτ [x′0]〉
∣∣∣∣∣ > t

6

]
, (305)

where x′0 ∼i.i.d. BG (θ) is an independent copy
of the random vector x0. Plugging in 〈vl, rx0〉 =〈
vl,R

T
x0
x0

〉
= 〈Rx0vl,x0〉.

P
[∣∣∣∣〈vl, 1

θm
rx0

〉∣∣∣∣ > t

]
≤ 6P

[∣∣∣∣ 1

θm

〈
Rx′0vl,x0

〉∣∣∣∣ > t

6

]
.

(306)
Again with Bernstein’s inequality for moment bounded
random variable, we have

P
[∣∣∣∣ 1

θm

〈
Rx′0vl,x0

〉∣∣∣∣ ≥ t]

≤ 2 exp

− θm2t2

2
∥∥Rx′0vl∥∥2

2
+ 2

∥∥Rx′0vl∥∥∞mt

 (307)

Control
∥∥Rx′0vl∥∥2

.

‖Rx0
vl‖22 ≤ ‖Rx0

‖22 ‖vl‖
2
2 = k ‖Rx0

‖22 (308)

With tail bound of the operator norm of a circulant matrix
in Lemma A.6, we have

P [‖Rx0
‖2 ≥ t] ≤ 4m exp

(
− t2

2θm+ 2t

)
(309)

Control
∥∥Rx′0vl∥∥∞. For a discrete Fourier basis vl as

defined, we have

‖vl‖22 = ‖vl‖0 = 4k − 3, ‖vl‖∞ = 1 (310)

Note that

‖Rx0vl‖∞ = max
τ=1,...,2k−2

|〈sτ [x0],vl〉| (311)

and moment control Bernstein inequality implies that

P [|〈sτ [x0],vl〉| ≥ t]

≤ 2 exp

(
− t2

2θ ‖vl‖22 + 2 ‖vl‖∞ t

)
. (312)

with union bound, we obtain

P [‖Rx0
vl‖∞ ≥ t] ≤

2k−2∑
τ=1

P [|〈sτ [x0],vl〉| ≥ t] (313)

≤ 4k exp

(
− t2

8θk + 2t

)
(314)

Therefore, by plugging in∥∥Rx′0vl∥∥∞ ≤ t1 = 10
√
θk log k, (315)∥∥Rx′0vl∥∥2

≤ t2 = 5
√
θm logm, (316)

we obtain the following probabilities

P
[∥∥Rx′0vl∥∥∞ ≥ t1] ≤ 4k exp

(
− t21

8θk + 2t1

)
≤ 4k−8, (317)

P
[∥∥Rx′0∥∥2

≥ t2
]
≤ 4m exp

(
− t22

2θm+ 2t2

)
≤ 4m−6. (318)

Denoting event

E =
{∥∥Rx′0vl∥∥∞ ≤ t1, ∥∥Rx′0∥∥2

≤ t2
}
, (319)

and combining these bounds with (306), we obtain

P
[∥∥∥∥offdiag

(
1

θm
X0X

T
0

)∥∥∥∥
2

≥ δ/2
]

≤ 6P
[
max
l

∣∣∣∣ 1

θm

〈
Rx′0vl,x0

〉∣∣∣∣ ≥ δ

12

]
(320)

≤ 12k P
[∣∣∣∣ 1

θm

〈
Rx′0vl,x0

〉∣∣∣∣ ≥ δ

12

]
(321)

≤ 12kP
[∥∥Rx′0vl∥∥∞ > t1

]
+ 12kP

[∥∥Rx′0∥∥2
> t2

]
+ 12kP

[∣∣∣∣ 1

θm

〈
Rx′0vl,x0

〉∣∣∣∣ ≥ δ

12
| E
]

(322)

≤ 24k exp

(
− 100θkm logm/144

50θm logm+ 200
12 k
√
θm log k logm

)
+ 12k

(
4k−8 + 4m−6

)
(323)(

t1 = 10
√
θk log k, t2 = 5

√
θm logm

)
≤ 24k exp

(
− 1

144 min
{
k, 3
√
θm
})

+ 48k−7 + 48m−5

(324)
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At last, by combining the control for both the
diagonal and off-diagonal term, we obtain that
with probability no smaller than 1 − 2 exp (−θk) −
24k exp

(
− 1

144 min
{
k, 3
√
θm
})
− 48k−7 − 48m−5,∥∥∥∥ 1

θm
X0X

T
0 − I

∥∥∥∥
2

≤ 10
√
k logm/m, (325)

holds and completes the proof.

Lemma D.2. Suppose δ =
∥∥ 1
θmX0X

T
0 − I

∥∥
2
≤ 1/

(
2κ2

)
,

then∥∥∥∥∥
(

1

θm
Y Y T

)1/2 (
A0A

T
0

)−1/2
− I

∥∥∥∥∥
2

≤ κ2δ/σmin.

(326)

Proof. As in [Bha97], we denote the directional derivative
of f at direction ∆ with

Df(M) (∆) =
d

dt

∣∣∣∣
t=0

f(M + t∆), (327)

Denote symmetric matrix M = A0A
T
0 = UΛUT ,

with λmax and λmin being its maximum and minimum
eigenvalue. Then we have

1

θm
Y Y T = M + ∆, ‖∆‖2 ≤ λmaxδ. (328)

We denote f(M) = M1/2 and g(M) = M2, then
f = g−1. Moreover, we denote derivative of f(M) with
Df(M). By differential calculus, we can obtain that∥∥∥∥∥
(

1

θm
Y Y T

)1/2 (
A0A

T
0

)−1/2
− I

∥∥∥∥∥
2

=

∥∥∥∥(A0A
T
0 + ∆

)1/2 (
A0A

T
0

)−1/2
− I

∥∥∥∥
2

(329)

=

∥∥∥∥(A0A
T
0

)−1/2
∫ 1

t=0
Df

(
A0A

T
0 + t∆

)
(∆) dt

∥∥∥∥
2

(330)

≤ sup
t∈[0,1]

∥∥∥Df (A0A
T
0 + t∆

)∥∥∥
2
‖∆‖2

∥∥∥∥(A0A
T
0

)−1/2
∥∥∥∥

2

(331)

≤ sup
t∈[0,1]

∥∥∥Df (A0A
T
0 + t∆

)∥∥∥
2
λmaxδ/σmin (332)

The directional derivative of g has following form

Dg (M) (X) = MX +XM , (333)

and directional derivative Z = Df (M) (X) satisfies

MZ +ZM = X. (334)

Denote M = UΛUT with U orthogonal, then
without loss of generality, we have

ΛZ +ZΛ = X. (335)

Applying Theorem VII.2.3 of [Bha97], we have

‖Df (M) (X)‖2

= sup
‖X‖2≤1

‖Z‖2 (336)

≤ sup
‖X‖2≤1

∫ ∞
t=0

∥∥∥e−ΛtXe−Λt
∥∥∥

2
dt (337)

≤ sup
‖X‖2≤1

∫ ∞
t=0

e−2λmint ‖X‖2 dt (338)

and

sup
t∈[0,1]

∥∥∥Df (A0A
T
0 + t∆

)∥∥∥
2

≤
‖X‖2

2 (λmin − λmaxδ)
(339)

≤ 1/λmin. (340)

Therefore,∥∥∥∥∥
(

1

θm
Y Y T

)1/2 (
A0A

T
0

)−1/2
− I

∥∥∥∥∥
2

≤ κ2δ/σmin.

(341)

Lemma D.3. Suppose A0 has condition number κ and

δ =

∥∥∥∥ 1

θm
X0X

T
0 − I

∥∥∥∥
2

≤ 1/
(
2κ2

)
(342)

then∥∥∥∥∥
(

1

θm
Y Y T

)−1/2

−
(
A0A

T
0

)−1/2
∥∥∥∥∥

2

≤ 4κ2δ/σ2
min.

(343)

Proof. Suppose matrix M = A0A
T
0 = UΛUT has

maximum and minimum eigenvalue λmax and λmin.
Then we have

1

θm
Y Y T = M + ∆, ‖∆‖2 ≤ λmaxδ. (344)

Denote function f(M) = M−1/2 and Df is the deriva-
tive of function f , then∥∥∥∥∥

(
1

θm
Y Y T

)−1/2

−
(
A0A

T
0

)−1/2
∥∥∥∥∥

2

=
∥∥∥(M + ∆)

−1/2 −M−1/2
∥∥∥

2
(345)

≤ ‖∆‖2 · sup
0≤t≤1

‖Df (M + t∆)‖2 . (346)

In addition, we define function g(M) = M−2, h(M) =
M−1, w(M) = M2, and following function composi-
tions hold

f = g−1, g = h ◦ w. (347)

For differential function g and if Dg (f (M)) 6= 0, we
have

Df (M) = [Dg (f (M))]
−1
. (348)

The derivative of function g satisfies the chain rule that

Dg (M) = Dh (w (M)) (Dw (M)) . (349)
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Plug in

Dh (M) (X) = −M−1XM−1, (350)
Dw (M) (X) = MX +XM , (351)

we obtain that

Dg (M) (X) (352)
= Dh (w (M)) (Dw (M) (X)) (353)
= Dh (w (M)) [MX +XM ] (354)

= Dh
(
M2

)
[MX +XM ] (355)

= −M−2 [MX +XM ]M−2 (356)

= −
[
M−1XM−2 +M−2XM−1

]
. (357)

Since the function g is differentiable and Dg(M) 6= 0,
then

Df (M) = [Dg (f (M))]
−1 (358)

=
[
Dg

(
M−1/2

)]−1
. (359)

Hence, directional derivative Z .
= Df (M) (X) satisfies

M1/2ZM +MZM1/2 = −X. (360)

Denote M = UΛUT with Λ � 0 and U orthogonal,
without loss of generality

ΛZΛ1/2 + Λ1/2ZΛ = −X. (361)

Above equation can be reformulated as a Sylvester
equation as following

Λ1/2Z −Z
(
−Λ1/2

)
= −Λ−1/2XΛ−1/2. (362)

From Theorem VII.2.3 of [Bha97], when there are no
common eigenvalues of Λ1/2 and −Λ1/2, then there
exists a closed form solution for matrix Z that

Z =

∫ ∞
t=0

e−Λ
1/2t

(
−Λ−1/2XΛ−1/2

)
e−Λ

1/2tdt (363)

Therefore, the operator norm of Df (M) can be
obtained as

‖Df(M)(X)‖2 = sup
‖X‖2≤1

‖Z‖2 (364)

≤ sup
‖X‖2≤1

∫ ∞
t=0

∥∥∥e−Λ1/2t
(
Λ−1/2XΛ−1/2

)
e−Λ

1/2t
∥∥∥ dt

(365)

≤ sup
‖X‖2≤1

∫ ∞
t=0

e−λmint
∥∥∥Λ−1/2XΛ−1/2

∥∥∥ dt (366)

≤ sup
‖X‖2≤1

‖X‖
λ2

min

. (367)

Therefore,∥∥∥(M + ∆)
−1/2 −M−1/2

∥∥∥
2

≤
‖∆‖2

(λmin − ‖∆‖2)
2 (368)

≤
4 ‖∆‖2
λ2

min

(
δ ≤ 1/

(
2κ2

))
(369)

≤ 4λmaxδ

λ2
min

(370)

=
4κ2δ

σ2
min

. (371)

APPENDIX E
CONCENTRATION FOR GRADIENT (LEMMA 4.2)
Lemma E.1. Suppose x0 ∼i.i.d. BG (θ). There exists a
positive constant C such that whenever

m ≥ C
min

{
(2C?µ)

−1
, κ2k2

}
(1− θ)2

σ2
min

κ8k4 log3

(
κk

(1− θ)σmin

)
(372)

and θ > log k/k, then with probability no smaller
than 1 − c1 exp (−k) − c2k

−4 − 2 exp (−θk) −
24k exp

(
− 1

144 min
{
k, 3
√
θm
})
− 48k−7 − 48m−5,∥∥∥∥grad[ψ] (q)− 3 (1− θ)

θm2
grad[ϕ] (q)

∥∥∥∥
2

≤ c1− θ
θm2

∥∥ATq
∥∥6

4

κ2
,

(373)
holds for all q ∈ R̂2C? with positive constant c ≤ 3/ (2C?).

Proof. Denote η = Y T
(
Y Y T

)−1/2
q and η̄ =

Y T
(
θmA0A

T
0

)−1/2
q = (θm)

−1/2
XT

0 ζ, then∥∥∥∥grad [ψ] (q)− 3 (1− θ)
θm2

grad [ϕ] (q)

∥∥∥∥
2

=

∥∥∥∥Pq⊥ [ 1

m

(
Y Y T

)−1/2
Y η◦3 − 3 (1− θ)

θm2
Aζ◦3

]∥∥∥∥
2

≤ 1

m

∥∥∥∥(Y Y T
)−1/2

Y η◦3 − (θm)
−1/2

AX0η
◦3
∥∥∥∥

2︸ ︷︷ ︸
∆g

1

+
1

θ1/2m3/2

∥∥AX0η
◦3 −AX0η̄

◦3∥∥
2︸ ︷︷ ︸

∆g
2

+

∥∥∥∥Pq⊥ [ 1

θ1/2m3/2
AX0η̄

◦3 − 3 (1− θ)
θm2

Aζ◦3
]∥∥∥∥

2︸ ︷︷ ︸
∆g

3

.

First, let us note that

C (1− θ)−2
σ−2

minκ
10k6 log3

(
κk

(1− θ)σmin

)
≤ C

(
κk

σmin (1− θ)

)10

log3

(
κk

(1− θ)σmin

)
(374)

≤ C
(

κk

(1− θ)σmin

)13

, (375)

hence

log3
(
C (1− θ)−2

σ−2
minκ

10k6 log3
(

(1− θ)−1
σ−1

minκk
))

C log3
(

(1− θ)−1
σ−1

minκk
)
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≤

 logC + 13 log
(

(1− θ)−1
σ−1

minκk
)

C1/3 log
(

(1− θ)−1
σ−1

minκk
)

3

(376)

≤

 logC

C1/3 log
(

(1− θ)−1
σ−1

minκk
) +

13

C1/3

3

(377)

≤
(

1

C1/6
+

1

2

1

C1/6

)3 (
C ≥ 108

)
(378)

≤ 4

C1/2
. (379)

Given

m ≥ C
min

{
(2C?µ)

−1
, κ2k2

}
(1− θ)2

σ2
min

κ8k4 log3

(
κk

σmin (1− θ)

)
,

(380)
as the ratio log3m/m decreases with increasing m, then

log3m

m
≤

log3
(

Cκ10k6

(1−θ)2σ2
min

log3
(

κk
(1−θ)σmin

))
C log3

(
κk

(1−θ)σmin

)
× (1− θ)2

σ2
min

min
{

(2C?µ)
−1
, κ2k2

}
κ8k4

(381)

≤ 4

C1/2

(1− θ)2
σ2

min

min
{

(2C?µ)
−1
, κ2k2

}
κ8k4

(382)

According to Lemma D.1, following inequality always
holds∥∥∥∥ 1

θm
X0X

T
0 − I

∥∥∥∥
2

≤ δ (383)

≤ 10
√
k logm/m (384)

≤
20 (1− θ)σmin max

{
(2C?µ)

1/2
, (κk)

−1
}

C1/4κ4k3/2 logm
(385)

≤ 20σmin

C1/4κ3

(1− θ)
∥∥ATq

∥∥6

4

κ2k logm
, ∀q ∈ R̂2C? . (386)

with probability no smaller than 1 − ε0 with ε0 =

2 exp (−θk)+24k exp
(
− 1

144 min
{
k, 3
√
θm
})

+48k−7+

48m−5. Moreover, 4κ3δ/σmin ≤ 1/2 whenever

C ≥
(

160 (1− θ)
k logm

)4

, (387)

whence δ ≤ 1/
(
8κ2

)
, and Lemma D.3 implies that∥∥∥∥∥

(
1

θm
Y Y T

)−1/2

A0 −
(
A0A

T
0

)−1/2
A0

∥∥∥∥∥
2

≤ 4κ3δ/σmin (388)

≤ 80 (1− θ)
C1/4k logm

∥∥ATq
∥∥6

4

κ2
, ∀q ∈ R̂2C? . (389)

At the same time,

‖X0‖2 ≤ (θm)
1/2
√

1 + δ ≤ (θm)
1/2

(1 + δ/2) . (390)

Moreover, Lemma A.5 implies that with probability no
smaller than 1− εB , we have

‖x0‖∞ ≤
√

2 log1/2

(
2θm

εB

)
. (391)

Upper Bound for ∆g
1. Using Lemma A.7, on the an event

of probability at least 1− ε0 − εB ,∥∥η◦3∥∥
2

= ‖η‖36 (392)

≤
(

1 +
4κ3δ

σmin

)2
2k

θm
‖x0‖2∞ (393)

≤ 9k

θm
log

(
2θm

εB

)
. (394)

Therefore, we can obtain following upper bound

∆g
1 =

1

m

∥∥∥∥(Y Y T
)−1/2

Y η◦3 − (θm)
−1/2

AX0η
◦3
∥∥∥∥

2

(395)

≤ 1

θ1/2m3/2
‖X0‖2

∥∥η◦3∥∥
2

∥∥∥∥∥
(

1

θm
Y Y T

)−1/2

A0 −A
∥∥∥∥∥

2
(396)

≤ 5

4m
· 4κ3δ

σmin
· 9k

θm
log

(
2θm

εB

)
(397)

≤ 900 (1− θ) log (2θm/εB)

C1/4θm2 logm

∥∥ATq
∥∥6

4

κ2
∀q ∈ R̂2C? .

(398)

Upper Bound for ∆g
2. Similarly, with probability no

smaller than 1 − ε0 − εB , together with Lemma A.7,
following upper bound can be obtained∥∥η◦3 − η̄◦3∥∥

2

=
∥∥η◦3 − diag

(
η◦2
)
η̄ + diag

(
η◦2
)
η̄ − η̄◦3

∥∥
2

(399)

≤ ‖η − η̄‖2
∥∥diag

(
η◦2
)∥∥

2
+ ‖η̄‖2

∥∥diag
(
η◦2 − η̄◦2

)∥∥
2

(400)

= ‖η − η̄‖2 ‖η‖
2
∞ + ‖η̄‖2

∥∥η◦2 − η̄◦2∥∥∞ (401)

≤ ‖η − η̄‖2 ‖η‖
2
∞ + ‖η̄‖2 ‖η − η̄‖∞ ‖η + η̄‖∞ (402)

≤ 4 (1 + δ/2)
4κ3δ

σmin

k

θm
log (2θm/εB)×[(

1 +
4κ3δ

σmin

)2

+

(
2 +

4κ3δ

σmin

)]
(403)

≤ 24k

θm
log (2θm/εB) · 4κ3δ

σmin
. (404)

Therefore, we can obtain following upper bound

∆g
2 =

1

θ1/2m3/2

∥∥∥AXT
0 η
◦3 −AXT

0 η̄
◦3
∥∥∥

2
(405)

≤ 1

θ1/2m3/2
‖A‖2 ‖X0‖2

∥∥η◦3 − η̄◦3∥∥
2

(406)

≤ 5

4m
· 24k

θm
log (2θm/εB) · 4κ3δ

σmin
(407)

≤ 2400

C1/4

1− θ
θm2

∥∥ATq
∥∥6

4

κ2
· log (2θm/εB)

logm
. (408)
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For both ∆g
1 and ∆g

2 to be bounded by 1
2C?

1−θ
θm2

‖AT q‖6
4

κ2 ,
we set

C ≥
(

4800C?
log (2θm/εB)

logm

)4

. (409)

Tail Bound for ∆g
3. Note that(

A0A
T
0

)−1/2
Y η̄◦3

=
(
A0A

T
0

)−1/2
A0X0

(
Y T

(
θmA0A

T
0

)−1/2
q

)◦3
(410)

= (θm)
−3/2

AX0

(
XT

0 A
Tq
)◦3

, (411)

and its expectation with respect to x0

E
[

1

m
AX0

(
XT

0 A
Tq
)◦3]

= E
[
Axi

(
xTi A

Tq
)3
]

(412)

= 3θ (1− θ)Aζ◦3 + 3θ2
∥∥∥ATq

∥∥∥2

2
AATq (413)

= 3θ (1− θ)Aζ◦3 + 3θ2q, (414)

hence

Pq⊥

[
E
[

1

m
AX0

(
XT

0 A
Tq
)◦3]]

= Pq⊥
[
3θ (1− θ)Aζ◦3

]
. (415)

Therefore, the ∆g
3 term can be simplified as

∆g
3 =

∥∥∥∥Pq⊥ [ 1

θ1/2m3/2
AXT

0 η̄
◦3 − 3 (1− θ)

θm2
Aζ◦3

]∥∥∥∥
2

(416)

=
1

θ2m2

∥∥∥∥∥Pq⊥
[
AX0

(
XT

0 ζ
)◦3

m
− 3θ (1− θ)Aζ◦3

]∥∥∥∥∥
2

(417)

≤ 1

θ2m2

∥∥∥∥∥Pq⊥
[
AX0

(
XT

0 ζ
)◦3

m
− E [·]

]∥∥∥∥∥
2

+
1

θ2m2

∥∥Pq⊥ [3θ2q
]∥∥

2
(418)

≤ 1

θ2m2

∥∥∥∥ 1

m
X0

(
XT

0 ζ
)◦3
− E [·]

∥∥∥∥
2

. (419)

Under the assumption that

m ≥ C

(1− θ)2 min
{
µ−1, κ2k2

}
κ2k4 log3 (κk) , (420)

applying Lemma E.2, we have∥∥∥∥ 1

m
X0

(
XT

0 A
Tq
)◦3
− E [·]

∥∥∥∥
2

≤ cθ (1− θ)
∥∥ATq

∥∥6

4

κ2
.

(421)
with probability larger than 1− c2 exp (−k)− c2k−4. At
last, taking εB = θ2k−4, we obtain that∥∥∥∥grad [ψ] (q)− 3 (1− θ)

θm2
grad [ϕ] (q)

∥∥∥∥
2

≤ c1− θ
θm2

∥∥ATq
∥∥6

4

κ2
, ∀q ∈ R̂2C? (422)

with probability larger than 1− c2 exp (−k)− c2k−4 −
εB − ε0 as desired.

E.1 Proof of Lemma E.2
Lemma E.2. Suppose x0 ∼i.i.d. BG (θ) ∈ Rm. There exist
positive constant C such that whenever

m ≥ C

(1− θ)2 min
{

(2C?µ)
−1
, κ2k2

}
κ2k4 log3 (κk)

(423)
and θk ≥ 1, then with probability no smaller than 1 −
c1 exp (−k)− c2k−4,∥∥∥∥ 1

m
X0

(
XT

0 A
Tq
)◦3
− E [·]

∥∥∥∥
2

≤ cθ (1− θ)
∥∥ATq

∥∥6

4

κ2

(424)
holds for all q ∈ R̂2C? with positive constant c ≤ 1/ (2C?).

Proof. Let x̄i ∈ R2k−1 be generated via

x̄i =

{
xi ‖xi‖∞ ≤ B and ‖xi‖0 ≤ 4θk logm

0 else
(425)

Let X̄0 ∈ R(2k−1)×m denote the circulant submatrix
generated by x̄0. Then X̄0 = X0 obtains whenever

1) ‖x0‖∞ ≤ B, which happens with probability
no smaller than 1 − 2θme−B

2/2 according to
Lemma A.5;

2) ‖xi‖0 ≤ 4θk logm holds for any index i, apply-
ing Lemma A.4 and Boole’s inequality we have

E
[
1⋃

i‖xi‖0>4θk logm

]
≤ mP [‖xi‖0 > 4θk logm] (426)

≤ 2m exp
(
− 3

4θk logm
)
. (427)

Denote

gE = E
[

1

m
X0

(
XT

0 A
Tq
)◦3]

, (428)

ḡE = E
[

1

m
X̄0

(
X̄T

0 A
Tq
)◦3]

, (429)

then,

P

[∥∥∥∥ 1

m
X0

(
XT

0 ζ
)◦3
− gE

∥∥∥∥
2

≥ cθ (1− θ)
‖ζ‖64
κ2

]

≤ P

[∥∥∥∥ 1

m
X̄0

(
X̄T

0 ζ
)◦3
− gE

∥∥∥∥
2

≥ cθ (1− θ)
‖ζ‖64
κ2

]
+ 2θme−B

2/2 + 2m exp
(
− 3

4θk logm
)

(430)

With triangle inequality, we have∥∥∥∥ 1

m
X̄0

(
X̄T

0 ζ
)◦3
− gE

∥∥∥∥
2

(431)

≤
∥∥∥∥E [ 1

m
X̄0

(
X̄T

0 ζ
)◦3]

− ḡE
∥∥∥∥

2

+ ‖ḡE − gE‖2 .
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Hence, provided

‖ḡE − gE‖2 ≤
c

2
θ(1− θ)

‖ζ‖64
κ2

, (432)

we have

P

[∥∥∥∥ 1

m
X̄0

(
X̄T

0 ζ
)◦3
− gE

∥∥∥∥
2

≥ cθ (1− θ)
‖ζ‖64
κ2

]

≤ P

[∥∥∥∥ 1

m
X̄0

(
X̄T

0 ζ
)◦3
− ḡE

∥∥∥∥
2

≥ c

2
θ (1− θ)

‖ζ‖64
κ2

]
.

(433)

Truncation Level Next, we choose a large enough entry-
wise truncation level B such that the expectation of
the gradient E

[
1
mX0

(
XT

0 ζ
)◦3]

is close to that of its

truncation E
[

1
mX̄0

(
X̄T

0 ζ
)◦3]

. Moreover, we introduce
following events notation

Ei
.
= {‖xi‖∞ > B ∪ ‖xi‖0 > 4θk logm} , (434)

then

‖ḡE − gE‖2

=

∥∥∥∥∥E
[

1

m

∑
i

xi 〈xi, ζ〉3 · 1Ei

]∥∥∥∥∥
2

(435)

≤ 1

m

∑
i

∥∥∥E [xi 〈xi, ζ〉3 · 1Ei]∥∥∥
2

(436)

≤ 1

m

∑
i

(
E

[∥∥∥∥xi (xTi ζ)◦3∥∥∥∥2

2

]
· E [1Ei ]

)1/2

(437)

≤
(
E
[
‖xi‖82

])1/2
×√

E
[
1‖xi‖∞>B

]
+ E

[
1‖xi‖0>4θk logm

]
(438)

≤ 50k2
√

4θke−B2/2 + exp
(
− 3

4θk logm
)

(439)

By setting

B ≥ C ′ log1/2

(
κ4k8

θ (1− θ)2

)
, (440)

we have

θke−B
2/2 ≤ 1

2

( c

100

)2
θ2 (1− θ)2 ‖ζ‖

12
4

κ4k4
. (441)

In addition, whenever

θk ≥ 4

3 logm
log

(
4002κ4k4

c2θ2 (1− θ)2 ‖ζ‖12
4

)
, (442)

we have

exp
(
− 3

4θk logm
)
≤ 1

2

( c

100

)2
θ2 (1− θ)2 ‖ζ‖

12
4

κ4k4
.

(443)
Therefore,√

4θke−B2/2 + exp
(
− 3

4θk logm
)
≤ c

2
θ (1− θ)

‖ζ‖64
50κ2k2

.

(444)

In addition,(
E
[
‖xi‖82

])1/2
≤
(
7!! · 24k4

)1/2
< 50k2. (445)

Plugging in Eq (445) and (444) back to (439), we
obtain that

‖ḡE − gE‖2 ≤
c

2
θ (1− θ)

∥∥ATq
∥∥6

4

κ2
, (446)

and hence

P

[∥∥∥∥ 1

m
X̄0

(
X̄T

0 ζ
)◦3
− gE

∥∥∥∥
2

≥ cθ (1− θ)
‖ζ‖64
κ2

]

≤ P

[∥∥∥∥ 1

m
X̄0

(
X̄T

0 ζ
)◦3
− ḡE

∥∥∥∥
2

≥ c

2
θ (1− θ)

‖ζ‖64
κ2

]
.

(447)

Independent Submatrices. To deal with the complicated
dependence within the random circulant matrix X0,
we break X0 into submatrices X1, . . . ,X2k−1, each of
which is (marginally) distributed as a (2k − 1) × m

2k−1
i.i.d. BG(θ) random matrix. Indeed, there exists a per-
mutation Π such that

X0Π = [X1,X2, · · · ,X2k−1] , (448)

with

Xi =
[
xi,xi+(2k−1), · · · ,xi+(m−2k−1)

]
. (449)

We apply similar matrix breaking approach for the
truncated matrix X̄ . The summands within each term
X̄i

(
X̄T
i ζ
)◦3

are mutually independent and hence is
amenable to classical concentration results.

1

m
X̄0

(
X̄T

0 ζ
)◦3

=
1

m

m∑
l=1

〈x̄l, ζ〉3 x̄l (450)

=
2k−1∑
i=1

1

m

 m
2k−1−1∑
j=0

〈
x̄i+(2k−1)j , ζ

〉3
x̄i+(2k−1)j

 (451)

=
2k−1∑
i=1

1

m
X̄i

(
X̄T
i ζ
)◦3

. (452)

We conservatively bound the quantity of inter-
est, 1

mX̄0

(
X̄T

0 ζ
)◦3

, by ensuring that for each k,
X̄k

(
X̄T
k ζ
)◦3

be close to its expectation.

P

[∥∥∥∥ 1

m
X̄0

(
X̄T

0 ζ
)◦3
− ḡE

∥∥∥∥
2

≥ c

2
θ (1− θ)

‖ζ‖64
κ2

]

≤
2k−1∑
i=1

P

[∥∥∥∥ 1

m
X̄i

(
X̄T
i ζ
)◦3
− ḡE

2k − 1

∥∥∥∥
2

≥ c

2

θ (1− θ) ‖ζ‖64
κ2 (2k − 1)

]

=
2k−1∑
i=1

P

[∥∥∥∥ 1

m
X̄i

(
X̄T
i ζ
)◦3
− ḡE

∥∥∥∥
2

≥ c

2

θ (1− θ) ‖ζ‖64
κ2 (2k − 1)

]
Applying Bernstein inequality for matrix variables as

in Lemma G.7, with d1 = 2k − 1, d2 = 1, we can obtain
that for independent random vectors v1, . . . ,vn with

σ2 =
n∑
i=1

E[‖vi‖22] (453)
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and ensuring that

‖vi‖2 ≤ R a.s. (454)

we obtain that

P

[∥∥∥∥∥∑
i

vi − E [·]
∥∥∥∥∥ > t

]
≤ 4k exp

( −t2/2
σ2 + 2Rt/3

)
(455)

Here, we have used that∥∥∥∥∥
n∑
i=1

E[viv
∗
i ]

∥∥∥∥∥ ≤ tr
n∑
i=1

E[viv
∗
i ] (456)

=
n∑
i=1

E
[
‖vi‖22

]
. (457)

and
wi = x̄i 〈x̄i, ζ〉3 . (458)

Notice that

‖wi‖2 ≤ ‖x̄i‖
4
2 (459)

≤
(
4B2θk logm

)2
(460)

= 16B4θ2k2 log2m. (461)

Let us further note that∑
j1,

j2 6=j3 6=j4

E
[
x̄i(j1)2x̄i(j2)2ζ2

j2 x̄i(j3)2ζ2
j3 x̄i(j4)2ζ2

j4

]
= 3

∑
j1 6=j2 6=j3

E
[
x̄i(j1)4ζ2

j1 x̄i(j2)2ζ2
j2 x̄i(j3)2ζ2

j3

]
+

2k−1∑
j1=1

E
[
x̄i(j1)2

]
×∑

j1 6=j2 6=j3 6=j4

E
[
x̄i(j2)2ζ2

j2 x̄i(j3)2ζ2
j3 x̄i(j4)2ζ2

j4

]
(462)

≤ 2θk × θ3 ‖ζ‖62 + 3× 3θ3 ‖ζ‖62 (463)

In similar vein, we can obtain that∑
j1,j2 6=j3

E
[
x̄i(j1)2x̄i(j2)2ζ2

j2 x̄i(j3)4ζ4
j3

]
=
∑
j1

E
[
x̄i(j1)2

] ∑
j2 6=j3 6=j1

E
[
x̄i(j2)2ζ2

j2 x̄i(j3)4ζ4
j3

]
+
∑
j1 6=j2

E
[
x̄i(j1)4ζ2

j1 x̄i(j2)4ζ4
j2

]
+
∑
j1 6=j2

E
[
x̄i(j1)2ζ2

j1 x̄i(j2)6ζ4
j2

]
(464)

≤ 2θk × 3θ2 ‖ζ‖22 ‖ζ‖
4
4 + (9 + 15) θ2 ‖ζ‖22 ‖ζ‖

4
4 (465)

and ∑
j1,j2

E
[
x̄i(j1)2x̄i(j2)6ζ6

j2

]
=
∑
j1

E
[
x̄i(j1)2

] ∑
j2 6=j1

E
[
x̄i(j2)6ζ6

j2

]
+
∑
j1

E
[
x̄i(j1)8ζ6

j1

]
(466)

≤ 2θk × 15θ ‖ζ‖66 + 105θ ‖ζ‖66 (467)

Now we calculate

E
[
‖wi‖22

]
= E

[
‖x̄i‖22 〈x̄i, ζ〉

6
]

(468)

= E

 ∑
j1,...,j7

x̄i(j1)2
7∏
`=2

x̄i(j`)ζj`

 (469)

= 15
∑
j1,

j2 6=j3 6=j4

E
[
x̄i(j1)2x̄i(j2)2ζ2

j2 x̄i(j3)2ζ2
j3 x̄i(j4)2ζ2

j4

]
+ 15

∑
j1,j2 6=j3

E
[
x̄i(j1)2x̄i(j2)2ζ2

j2 x̄i(j3)4ζ4
j3

]
+
∑
j1,j2

E
[
x̄i(j1)2x̄i(j2)6ζ6

j2

]
(470)

≤ 15θ3 ‖ζ‖62 (2θk + 9)

+ 15θ2 ‖ζ‖44 (6 + 24)

+ θ ‖ζ‖66 (30θk + 105) (471)

≤ 150θ2k + 600θ (472)

whence for θ > 1/k,

E
[
‖wi‖22

]
≤ Cθ2k, (473)

and hence
σ2 ≤ C ′θ2m. (474)

Matrix Bernstein gives that

P
[∥∥∥X̄i(X̄

T
i ζ)◦3 − E [·]

∥∥∥
2
≥ t
]

≤ 4k exp

( −t2/2
Cθ2m+ C ′B4θ2k2 log2 kt

)
. (475)

Setting t = c
4
mθ(1−θ)‖ζ‖64
κ2(2k−1) , we can obtain

P
[∥∥∥∥ 1

m
X̄i(X̄

T
i ζ)◦3 − E [·]

∥∥∥∥
2

≥ c

4

θ(1− θ)‖ζ‖64
κ2 (2k − 1)

]
≤ 4k exp

(
−

c′′m (1− θ)2 ‖ζ‖12
4

κ4k2 + θ (1− θ)B4κ2k3 ‖ζ‖64

)
(476)

ε-Net Covering To obtain a probability bound for all q ∈
Sk−1, we choose a set of ζn = ATqn with n = 1, · · · , N .
Suppose for any q ∈ Sk−1, there exists qn such that
‖q − qn‖2 ≤ ε, then∥∥∥∥ 1

m
X̄i

(
X̄T
i ζ
)◦3
− 1

m
X̄i

(
X̄T
i ζn

)◦3∥∥∥∥
2

≤ L ‖q − qn‖2 ,
(477)

where L is the Lipschitz constant for function
1
mX̄i

(
X̄T
i A

Tq
)◦3

. For entry wise bounded X̄i ∈
R(2k−1)× m

2k−1 , we have∥∥X̄i

∥∥
2
≤
√

2θmB,
∥∥X̄iej

∥∥
2
≤
√

4θkB, (478)

then the Lipschitz constant L can be bounded as

L ≤ 1

m

∥∥X̄i

∥∥
2

∥∥∥∥diag
(
X̄T
i ζ
)◦2∥∥∥∥

2

∥∥∥X̄T
i A

T
∥∥∥

2
(479)

≤ 8θ2kB4. (480)
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With triangle inequality, we have∥∥∥∥ 1

m
X̄i

(
X̄T
i ζ
)◦3
− E

[
1

m
X̄i

(
X̄T
i ζ
)◦3]∥∥∥∥

2

≤
∥∥∥∥E [ 1

m
X̄i

(
X̄T
i ζ
)◦3]

− E
[

1

m
X̄i

(
X̄T
i ζn

)◦3]∥∥∥∥
2

+

∥∥∥∥ 1

m
X̄i

(
X̄T
i ζn

)◦3
− E

[
1

m
X̄i

(
X̄T
i ζn

)◦3]∥∥∥∥
2

+

∥∥∥∥ 1

m
X̄i

(
X̄T
i ζ
)◦3
− 1

m
X̄i

(
X̄T
i ζn

)◦3∥∥∥∥
2

(481)

≤
∥∥∥∥ 1

m
X̄i

(
X̄T
i ζn

)◦3
− E

[
1

m
X̄i

(
X̄T
i ζn

)◦3]∥∥∥∥
2

+ 2Lε. (482)

Hence, we need to choose the ε-net to cover the
sphere of q with

ε =
c

4

θ (1− θ)
κ2 (2k − 1)L

min
q∈Sk−1

‖ζ‖64 , (483)

plug in L ≤ 4θ2kB4 and number of sample N suffice

N ≤
(

3

ε

)k
(484)

≤ exp

(
k ln

(
3

ε

))
(485)

≤ exp

[
k ln

(
C
θ2κ2k4B4

θ (1− θ)

)]
(486)

For n = 1, · · · , N , denote

Pi (qn)=P

[∥∥∥∥∥X̄i

(
X̄T
i ζn

)◦3
m

−E[·]
∥∥∥∥∥

2

≥
cθ(1− θ)‖ζn‖64
4κ2 (2k − 1)

]
,

(487)

then together with union bound over all qn , we obtain
that,

P

 sup
q∈R̂2C?

∥∥∥ 1
mX̄i

(
X̄T
i ζ
)◦3 − E [·]

∥∥∥
2

‖ζ‖64
≥ c

2

θ (1− θ)
κ2 (2k − 1)


≤

∑
qn∈R̂2C?

Pi (qn) (488)

≤ N max
qn∈R̂2C?

Pi (qn) (489)

≤ 4k sup
q∈R̂2C?

exp

(
−

cm (1− θ)2 ‖ζ‖12
4

κ4k2 + θ (1− θ)B4κ2k3 ‖ζ‖64

)
×

exp

(
k ln

(
3

ε

))
. (490)

Hence,

P

 sup
q∈R̂2C?

∥∥∥ 1
mX̄0

(
X̄T

0 ζ
)◦3− E [·]

∥∥∥
2

‖ζ‖64
≥ c

2

θ (1− θ)
κ2



≤
∑
i

P

 sup
q∈R̂2C?

∥∥∥ 1
mX̄i

(
X̄T
i ζ
)◦3− E [·]

∥∥∥
2

‖ζ‖64
≥ cθ (1− θ)

2κ2 (2k − 1)


(491)

≤ (2k − 1) max
i

P

 sup
q∈R̂2C?

∥∥∥ 1
mX̄i

(
X̄T
i ζ
)◦3− E [·]

∥∥∥
2

‖ζ‖64
≥ cθ (1− θ)

2κ2 (2k − 1)


(492)

≤ 8k2 sup
q∈R̂2C?

exp

(
−

cm (1− θ)2 ‖ζ‖12
4

κ4k2 + θ (1− θ)B4κ2k3 ‖ζ‖64

)
×

exp

(
k ln

(
3

ε

))
, (493)

which is bounded by exp (−k) as long as

m ≥ C
min

{
(2C?µ)

−2
, κ2k2

}
(1− θ)2 κ2k4 log3 (κk) (494)

≥ C ′k log

(
θκ2k2B4

(1− θ) ‖ζ‖64

)
×

max

{
κ4k2

(1− θ)2 ‖ζ‖12
4

,
θB4κ2k3

(1− θ) ‖ζ‖64

}
. (495)

To sum up, we obtain that for all q ∈ R̂2C? , inequality∥∥∥∥ 1

m
X0

(
XT

0 A
Tq
)◦3
− E [·]

∥∥∥∥
2

≤ cθ (1− θ)
∥∥ATq

∥∥6

4

κ2

(496)
holds with probability no smaller than 1− c1 exp (−k)−
c2k
−4 − c3 exp (−θk).

APPENDIX F
CONCENTRATION FOR HESSIAN (LEMMA 4.3)
Lemma F.1. Suppose x0 ∼i.i.d. BG (θ). There exists positive
constant C that whenever

m ≥ Cθ
min

{(
2C?µκ

2
)−4/3

, k2
}

(1− θ)2
σ2

min

κ6k4 log3

(
κk

(1− θ)σmin

)
(497)

and θ ≥ log k/k, then with probability no smaller
than 1 − c1 exp (−k) − c2k

−4 − 48k−7 − 48m−5 −
24k exp

(
− 1

144 min
{
k, 3
√
θm
})

,∥∥∥∥Hess[ψ] (q)− 3 (1− θ)
θm2

Hess[ϕ] (q)

∥∥∥∥
2

≤ c1− θ
θm2

∥∥∥ATq
∥∥∥4

4
,

(498)

holds for all q ∈ R̂2C? with positive constant c ≤ 0.048 ≤
3
(
1− 6c? − 36c2? − 24c3?

)
.

Proof. Denote

η = Y T
(
Y Y T

)−1/2
q, (499)
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η̄ = Y T
(
θmA0A

T
0

)−1/2
q = (θm)

−1/2
XT

0 ζ, (500)

and

W =

(
1

θm
Y Y T

)−1/2

−
(
A0A

T
0

)−1/2
, (501)

Ŷ =
(
Y Y T

)−1/2
Y . (502)

Then we have∥∥∥∥Hess [ψ] (q)− 3 (1− θ)
θm2

Hess [ϕ] (q)

∥∥∥∥
2

=
∥∥∥Pq⊥ [ 3

m
Ŷ diag

(
η◦2
)
Ŷ T − 〈q,∇ψ (q)〉 I

]
Pq⊥

− 3 (1− θ)
θm2

Pq⊥
[
3A diag

(
ζ◦2
)
AT − ‖ζ‖44 I

]
Pq⊥

∥∥∥
2

(503)

≤
∥∥∥Pq⊥ [ 3

m
Ŷ diag

(
η◦2
)
Ŷ T

]
Pq⊥

− Pq⊥
[

9 (1− θ)
θm2

A diag
(
ζ◦2
)
AT − 3

m2
I

]
Pq⊥

∥∥∥
2

+

∥∥∥∥[〈q,∇ψ (q)〉 − 3 (1− θ)
θm2

‖ζ‖44 −
3

m2

]
Pq⊥

∥∥∥∥
2

(504)

≤ 3

θm2

∥∥∥∥∥WY diag
(
η◦2
)
Y T

(
1

θm
Y Y T

)−1/2
∥∥∥∥∥

2︸ ︷︷ ︸
∆H

1

+
3

θm2

∥∥∥AX0 diag
(
η◦2
)
Y TW

∥∥∥
2︸ ︷︷ ︸

∆H
2

+
3

θm2

∥∥∥AX0 diag
(
η◦2 − η̄◦2

)
XT

0 A
T
∥∥∥

2︸ ︷︷ ︸
∆H

3

+
3

θm2

∥∥∥Pq⊥ [AX0 diag
(
η̄◦2
)
XT

0 A
T
]
Pq⊥︸ ︷︷ ︸

−Pq⊥
[
3 (1− θ)Adiag

(
ζ◦2
)
AT + θI

]
Pq⊥

∥∥∥
2︸ ︷︷ ︸

∆H
4

+

∥∥∥∥[〈q,∇ψ (q)〉 − 3 (1− θ)
θm2

‖ζ‖44 −
3

m2

]
Pq⊥

∥∥∥∥
2︸ ︷︷ ︸

∆H
5

(505)

In the rest of the proof, we prove that

∆H
i ≤

c

9

1− θ
θm2

‖ζ‖44 , i = 1, 2, 3. (506)

and

∆H
i ≤

c

3

1− θ
θm2

‖ζ‖44 , i = 4, 5. (507)

First, let us note that

C (1− θ)−2
σ−2

minκ
6k5 log3

(
κk

(1− θ)σmin

)
(508)

≤ C
(

κk

(1− θ)σmin

)6

log3

(
κk

(1− θ)σmin

)
(509)

≤ C
(

κk

(1− θ)σmin

)9

(510)

or

log3
(
C (1− θ)−2

σ−2
minκ

6k5 log3
(

κk
(1−θ)σmin

))
C log3

(
κk

(1−θ)σmin

)
≤

 logC + 9 log
(

κk
(1−θ)σmin

)
C1/3 log

(
κk

(1−θ)σmin

)
3

(511)

≤

 logC

C1/3 log
(

κk
(1−θ)σmin

) +
9

C1/3

3

(512)

≤
(

1

C1/6
+

1

2

1

C1/6

)3 (
C ≥ 108

)
(513)

≤ 4

C1/2
. (514)

Since

m ≥ C
min

{(
2C?µκ

2
)−4/3

, k2
}

(1− θ)2
σ2

min

κ6k4 log3

(
κk

(1− θ)σmin

)
,

(515)

as the ratio log3m/m decreases with increasing m, then

log3m

m

≤
log3

(
C κ6k5

(1−θ)2σ2
min

log3
(

κk
σmin(1−θ)

))
C log3

(
κk

σmin(1−θ)

)
× (1− θ)2

σ2
min

min
{

(2C?µκ2)
−2/3

, k
}
κ6k4

(516)

≤ 4

C1/2

(1− θ)2
σ2

min

min
{

(2C?µκ2)
−2/3

, k
}
κ6k4

(517)

According to Lemma D.1, the following inequality
holds∥∥∥∥ 1

θm
X0X

T
0 − I

∥∥∥∥
2

≤ δ (518)

≤ 10
√
k logm/m (519)

≤
20 (1− θ)σmin max

{(
2C?µκ

2
)2/3

, k−1
}

C1/4κ3k3/2 logm
(520)

≤ 20σmin

C1/4κ3
·

(1− θ)
∥∥ATq

∥∥4

4

k3/2 logm
, ∀q ∈ R̂2C? (521)

with probability no smaller than 1 − ε0 with ε0 =

2 exp (−θk)+24k exp
(
− 1

144 min
{
k, 3
√
θm
})

+48k−7+

48m−5.



0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2940657, IEEE
Transactions on Information Theory

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 29

We have 4κ3δ/σmin ≤ 1/2 whenever

C ≥
(

160 (1− θ)
k3/2 logm

)4

(522)

together with

σ2
min ≤

∥∥∥AT
0 e1

∥∥∥2

2
= ‖a0‖22 ≤

∥∥∥AT
0 a0

∥∥∥2

2
≤ σ2

max, (523)

whence δ ≤ 1/
(
8κ2

)
, and Lemma D.3 implies that∥∥∥∥∥

(
1

θm
Y Y T

)−1/2

A0 −
(
A0A

T
0

)−1/2
A0

∥∥∥∥∥
2

≤ 4κ3δ/σmin (524)

≤
80 (1− θ)

∥∥ATq
∥∥4

4

C1/4k3/2 logm
, ∀q ∈ R̂2C? . (525)

Moreover,

‖X0‖2 ≤ (θm)
1/2
√

1 + δ (526)

≤ (θm)
1/2

(1 + δ/2) (527)

≤ 17

16
(θm)

1/2
. (528)

Finally, Lemma A.5 implies that with probability no
smaller than 1− εB , we have

‖x0‖∞ ≤
√

2 log1/2

(
2θm

εB

)
. (529)

Upper Bound for ∆H
1 and ∆H

2 . With probability no
smaller than 1 − ε0 − εB , the norms of η are upper
bounded as in Lemma A.7,

∆H
1 ≤

3

θm2

∥∥∥∥∥
(

1

θm
Y Y T

)−1/2

A0 −A
∥∥∥∥∥

2

×

‖X0‖22 ‖η‖
2
∞

∥∥∥∥∥AT
0

(
1

θm
Y Y T

)−1/2
∥∥∥∥∥

2

(530)

≤ 3

θm2
· 4κ3δ

σmin
· (1 + δ/2)

2
θm·(

1 +
4κ3δ

σmin

)3
4k

θm
log (2θm/εB) (531)

≤ 3660

C1/4

1− θ
θm2

‖ζ‖44 ·
log (2θm/εB)

k1/2 logm
. (532)

A similar result holds for

∆H
2 ≤

3

θm2
‖X0‖22

∥∥diag
(
η◦2
)∥∥

2
×∥∥∥∥∥

(
1

θm
Y Y T

)−1/2

A0 −A
∥∥∥∥∥

2

(533)

≤ 2440

C1/4

1− θ
θm2

‖ζ‖44 ·
log (2θm/εB)

k1/2 logm
. (534)

To make ∆H
1 ≤ c

9
1−θ
θm2 ‖ζ‖44 and ∆H

2 ≤ c
9

1−θ
θm2 ‖ζ‖44, we

require

C ≥
(

9× 3660c−1 log (2θm/εB)

k1/2 logm

)4

. (535)

Upper Bound for ∆H
3 . With probability no smaller than

1− ε0− εB , the difference between η̄◦2 and η◦2 is upper
bounded as in Lemma A.7,∥∥η◦2 − η̄◦2∥∥∞

≤ ‖η − η̄‖∞ ‖η + η̄‖∞ (536)

≤ 4κ3δ

σmin

(
2 +

4κ3δ

σmin

)
2k

θm
log (2θm/εB) (537)

≤ 5k

θm
log (2θm/εB) · 4κ3δ

σmin
. (538)

Therefore

∆H
3 =

3

θm2

∥∥∥AX0 diag
(
η◦2 − η̄◦2

)
XT

0 A
T
∥∥∥

2
(539)

≤
θm2

‖A‖22 ‖X0‖22
∥∥diag

(
η◦2 − η̄◦2

)∥∥
2

(540)

≤ 15k

θm2
(1 + δ/2)

2
log (2θm/εB) · 4κ3δ

σmin
(541)

≤ 1400 (1− θ) log (2θm/εB)

C1/4θk1/2m2 logm
‖ζ‖44 . (542)

Again, ∆H
3 is bounded by c

9
1−θ
θm2 ‖ζ‖44 whenever

C ≥
(

9× 1400c−1 log (2θm/εB)

k1/2 logm

)4

(543)

Upper Bound for ∆H
4 . Recall that

η̄ = Y T
(
θmA0A

T
0

)−1/2
q, (544)

then

E
[
X0 diag

(
η̄◦2
)
XT

0

]
= E

[
1

θm
X0 diag

(
XT

0 A
Tq
)◦2

XT
0

]
(545)

= 3 (1− θ) diag
(
ATq

)◦2
+ 2θATqqTA

+ θ
∥∥∥ATq

∥∥∥2

2
I, (546)

once including the projection Pq⊥ , we have

Pq⊥E
[
AX0 diag

(
η̄◦2
)
XT

0 A
T
]
Pq⊥ (547)

= Pq⊥
[
3 (1− θ)Adiag

(
ζ◦2
)
AT + θI

]
Pq⊥ .

Therefore

∆H
4 =

3

θm2

∥∥∥Pq⊥ [AX0 diag
(
η̄◦2
)
XT

0 A
T
]
Pq⊥

− Pq⊥
[
3 (1− θ)Adiag

(
ζ◦2
)
AT + θI

]
Pq⊥

∥∥∥
2

(548)

≤ 3

θ2m2

∥∥∥∥ 1

m
X0 diag

(
XT

0 ζ
)◦2

XT
0 − E [·]

∥∥∥∥
2

(549)

Under the assumption for sample size that
m ≥ C (1− θ)−2

κ4 min
{

(2C?µ)
−2/3

, k
}
k3 log5 (κk),

applying Lemma F.2, we have∥∥∥∥ 1

m
X0 diag

(
XT

0 ζ
)◦2

XT
0 − E [·]

∥∥∥∥
2

≤ c

9
θ (1− θ) ‖ζ‖44 .

(550)
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simultaneously at every q ∈ R̂2C? with probability no
smaller than 1− c1 exp (−k)− c2k−4.

Upper Bound for ∆H
5 . Note that this term is essentially

the difference between the asymptotic and finite sample
objective

∆H
5 =

∥∥∥∥[〈q,∇ψ (q)〉− 3 (1− θ)
θm2

‖ζ‖44−
3

m2

]
Pq⊥

∥∥∥∥
2

(551)

≤
∣∣∣∣〈q,∇ψ (q)〉 − 3(1− θ)

θm2
‖ζ‖44 −

3

m2

∣∣∣∣ (552)

≤ 1

θ2m2

∣∣∣∣ 1

m

∥∥∥XT
0 ζ
∥∥∥4

4
− 3θ (1− θ) ‖ζ‖44 − 3θ2

∣∣∣∣
+

∣∣∣∣〈q,∇ψ (q)〉 − 1

θ2m2

∥∥∥XT
0 ζ
∥∥∥4

4

∣∣∣∣ (553)

≤ 1

θ2m2

∥∥∥∥∥AX0

(
XT

0 ζ
)◦3

m
−3θ(1− θ)AT ζ◦3−3θ2q

∥∥∥∥∥
2

+
1

m

∣∣∣‖η‖44 − ‖η̄‖44∣∣∣ (554)

Recall that

E
[

1

m
AX0

(
XT

0 A
Tq
)◦3]

= E
[
Axi

(
xTi A

Tq
)3
]

(555)

= 3θ (1− θ)Aζ◦3 + 3θ2q, (556)

With similar argument as in Lemma 4.2, we can show
that this term can be bounded by c

6
1−θ
θm2 ‖η‖44 whenever

m ≥ C ′
min

{(
µκ2

)−4/3
, k2
}

(1− θ)2
σ2

min

κ6k4 log3

(
κk

(1− θ)σmin

)
.

(557)

Moreover, with probability 1− ε0 − εB
1

m

∣∣∣‖η‖44 − ‖η̄‖44∣∣∣
≤ 1

m

∣∣〈η − η̄, 4η◦3〉∣∣ (558)

≤ 4

m
‖η − η̄‖2 ‖η‖

3
6 (559)

≤ 16κ3δ

σminm
(1 + δ/2)

(
1 +

4κ3δ

σmin

)2
4k

θm
log (2θm/εB)

(560)

≤ 153k

θm2
log (2θm/εB) · κ

3δ

σmin
(561)

≤ 3060

C1/4

(1− θ)
θm2

‖ζ‖44 ·
log (2θm/εB)

k1/2 logm
, (562)

which is bounded by c
6

1−θ
θm2 ‖ζ‖44 whenever

C ≥
(

6× 3060c−1 (1− θ) log (2θm/εB)

k1/2 logm

)4

. (563)

The right hand side is bounded by an absolute constant
for all m.

At last, by setting εB ≤ θ2 (1− θ)2
k−4 and adding

up failure probabilities, we have that with probability
larger than 1− c2 exp (−k)− c2k−4 − ε0,∥∥∥∥Hess [ψ] (q)− 3 (1− θ)

θm2
Hess [ϕ] (q)

∥∥∥∥
2

≤ c1− θ
θm2

∥∥∥ATq
∥∥∥4

4
(564)

holds as desired for all q ∈ R̂2C? , where ε0 =

2 exp (−θk)+24k exp
(
− 1

144 min
{
k, 3
√
θm
})

+48k−7+

48m−5.

F.1 Proof of Lemma F.2

Lemma F.2. Suppose x0 ∼i.i.d. BG (θ). There exist con-
stants C > 0 that whenever

m ≥ C
min

{(
2C?µκ

2
)−4/3

, k2
}

(1− θ)2 k4 log3 (κk) , (565)

and θk > 1, then with probability no smaller than 1 −
c1 exp (−k)− c2k−4,∥∥∥∥ 1

m
X0 diag

(
XT

0 A
Tq
)◦2

XT
0 − E [·]

∥∥∥∥
2

≤ cθ (1− θ)
∥∥∥ATq

∥∥∥4

4
, (566)

holds for all q ∈ R̂2C? with positive constant c ≤ 0.005 ≤(
1− 6c? − 36c2? − 24c3?

)
/3.

Proof. The proof strategy for the finite sample concentra-
tion of the Hessian is similar to that of the gradient
as presented in Lemma E.2. For simplicity, we will
only demonstrate some key steps here, please refer to
Lemma E.2 for detailed arguments.

Again, from Lemma A.5, the coefficient satisfies
‖x0‖∞ ≤ B with probability no smaller than 1 −
2θme−B

2/2. We write x̄0(i) = x0(i)1|x0(i)|≤B , and
let X̄0 denote the circulant matrix generated by the
truncated vector x̄0. Denote

HE = E
[

1

m
X0 diag

(
XT

0 A
Tq
)◦2

XT
0

]
, (567)

H̄E = E
[

1

m
X̄0 diag

(
X̄T

0 A
Tq
)◦2

X̄T
0

]
, (568)

then

P

[∥∥∥∥∥X0 diag
(
XT

0 ζ
)◦2
XT

0

m
−HE

∥∥∥∥∥
2

≥ cθ(1− θ)‖ζ‖44

]

≤ P

[∥∥∥∥∥X̄0 diag
(
X̄T

0 ζ
)◦2
X̄T

0

m
−HE

∥∥∥∥∥
2

≥ cθ(1− θ)‖ζ‖44

]

+ 2θme−B
2/2 + 2m exp

(
−3

4
θk logm

)
(569)
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while via triangle inequality,∥∥∥∥ 1

m
X̄0 diag

(
X̄T

0 A
Tq
)◦2

X̄T
0 −HE

∥∥∥∥
2

≤
∥∥∥∥ 1

m
X̄0 diag

(
X̄T

0 A
Tq
)◦2

X̄T
0 − H̄E

∥∥∥∥
2

+
∥∥H̄E −HE

∥∥
2
. (570)

Truncation Level. Next, we choose a large enough entry-
wise truncation level B such that the expectation of the
Hessian E

[
X0 diag

(
XT

0 A
Tq
)◦2
XT

0

]
is close to that of

its truncation E
[
X̄0 diag

(
X̄T

0 A
Tq
)◦2
X̄T

0

]
. Moreover,

we introduce following events notation

Ei
.
= {‖xi‖∞ > B ∪ ‖xi‖0 > 4θk logm} , (571)

then∥∥H̄E −HE

∥∥
2

=

∥∥∥∥∥E
[

1

m

∑
i

〈xi, ζ〉2 xixTi · 1Ei

]∥∥∥∥∥
F

(572)

≤ 1

m

∑
i

∥∥∥E [〈xi, ζ〉2 xixTi · 1Ei]∥∥∥
F

(573)

≤ 1

m

∑
i

(
E
[∥∥∥〈xi, ζ〉2 xixTi ∥∥∥2

F

]
· E [1Ei ]

)1/2

(574)

≤
(
E
[
‖xi‖82

])1/2
×√

E
[
1‖xi‖∞>B

]
+ E

[
1‖xi‖0>4θk logm

]
(575)

≤ 50k2
√

4θke−B2/2 + exp
(
− 3

4θk logm
)

(576)

By setting

B ≥ C ′ log1/2

(
k7

θ (1− θ)2

)
(577)

we have

θke−B
2/2 ≤ c′θ2 (1− θ)2 ‖ζ‖

8
4

k4
(578)

In addition, whenever

θk ≥ 4

3 logm
log

(
4002k4

c2θ2 (1− θ)2 ‖ζ‖84

)
, (579)

we have

exp
(
− 3

4θk logm
)
≤ 1

2

(
cθ(1− θ)

100

)2 ‖ζ‖84
k4

. (580)

Hence,√
4θke−B2/2+ exp

(
− 3

4θk logm
)
≤ cθ (1− θ)

100k2
‖ζ‖44 .

(581)

Therefore, we can obtain that∥∥H̄E −HE

∥∥
2
≤ c

2
θ (1− θ) ‖ζ‖44 (582)

always holds, hence

P

[∥∥∥∥∥X̄0 diag
(
X̄T

0 ζ
)◦2
X̄T

0

m
−HE

∥∥∥∥∥
2

≥ cθ(1− θ) ‖ζ‖44

]

≤P

[∥∥∥∥∥X̄0 diag
(
X̄T

0 ζ
)◦2
X̄T

0

m
−H̄E

∥∥∥∥∥
2

≥ c

2
θ(1− θ) ‖ζ‖44

]
.

(583)

Independent Sub-matrices. As we did in Lemma E.2,
we remove the dependence in X0 by sampling every
2k − 1 column such that

X0Π = [X1,X2, · · · ,X2k−1] , (584)

where

Xi =
[
xi,xi+(2k−1), · · · ,xi+(m−2k−1)

]
, (585)

and Π is a certain permutation of the columns of X0.
Applying Bernstein inequality for matrix variables

as in Lemma G.7, with Mi =
〈
x̄i,A

Tq
〉2
x̄ix̄

T
i ∈

R(2k−1)×(2k−1). Since

‖Mi‖2 =

∥∥∥∥〈x̄i,ATq
〉2
x̄ix̄

T
i

∥∥∥∥
2

(586)

≤ ‖x̄i‖42 (587)

≤ 4B4k2 (588)

and

‖E [MiM
∗
i ]‖ = ‖E [M∗

iMi]‖ (589)

=

∥∥∥∥E [〈x̄i,ATq
〉4
x̄ix̄

T
i x̄ix̄

T
i

]∥∥∥∥ (590)

=
∥∥∥E [〈x̄i, ζ〉4 ‖x̄i‖22 x̄ix̄Ti ]∥∥∥ (591)

≤ E
[
〈x̄i, ζ〉4 ‖x̄i‖42

]
, (592)

we obtain the following upper bound:

E
[
〈x̄i, ζ〉4 ‖x̄i‖42

]
= E

2k−1∑
j1,j2

x̄i (j1)
2
x̄i (j2)

2
∑

j3,··· ,j6

6∏
`=3

x̄i (j`) ζj`


(593)

= 3E

2k−1∑
j1,j2

x̄i (j1)
2
x̄i (j2)

2
∑
j3 6=j4

x̄i (j3)
2
ζ2
j3 x̄i (j4)

2
ζ2
j4


+ E

2k−1∑
j1,j2

x̄i (j1)
2
x̄i (j2)

2 ·
∑
j3

x̄i (j3)
4
ζ4
j3

 (594)

= 3E

 ∑
j1 6=j2
6=j3 6=j4

x̄i (j1)
2
x̄i (j2)

2
x̄i (j3)

2
ζ2
j3 x̄i (j4)

2
ζ2
j4


+ 3E

 ∑
j1 6=j2 6=j3

x̄i (j1)
4
x̄i (j2)

2
ζ2
j2 x̄i (j3)

2
ζ2
j3


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+ 6E

 ∑
j1 6=j2

x̄i (j1)
6
ζ2
j1 x̄i (j2)

2
ζ2
j2


+ 6E

 ∑
j1 6=j2 6=j3

x̄i (j1)
2
x̄i (j2)

4
ζ2
j2 x̄i (j3)

2
ζ2
j3


+ 6E

 ∑
j1 6=j2

x̄i (j1)
4
ζ2
j1 x̄i (j2)

4
ζ2
j2


+ 2E

 ∑
j1 6=j2

x̄i (j1)
2
x̄i (j2)

6
ζ4
j2


+ E

 ∑
j1 6=j2 6=j3

x̄i (j1)
2
x̄i (j2)

2
x̄i (j3)

4
ζ4
j3


+ E

 ∑
j1 6=j2

x̄i (j1)
4
x̄i (j2)

4
ζ4
j2


+ E

∑
j

x̄i (j)
8
ζ4
j

 (595)

≤
(
105θ + 18θ2k + 60θ2k + 12θ3k2

)
‖ζ‖44

+ 3
(
21θ2 + 30θ2 + 4θ4k2 + 12θ2k

)
‖ζ‖42 (596)

≤ Cθ3k2 (597)

Assuming θm ≥ 1, hence

σ2 = Cθ3km. (598)

Setting t = c
2

θ(1−θ)m‖ζ‖44
2k−1 in Matrix Bernstein gives

that

P
[∥∥∥∥X̄i

(
X̄T
i ζ
)◦3
− E [·]

∥∥∥∥
2

> t

]
≤ 8k exp

( −t2/2
Cθ3km+ C ′B4θ2k2t

)
, (599)

we obtain that

P

[∥∥∥∥∥X̄i diag
(
X̄T
i ζ
)◦2
X̄T
i

m
−E [·]

∥∥∥∥∥
2

> c
θ (1− θ) ‖ζ‖64

2k − 1

]

≤ 8k exp

(
−

cm (1− θ)2 ‖ζ‖84
θk3 + θ (1− θ)B4k3 ‖ζ‖44

)
(600)

ε-Net Covering To obtain a probability bound for all q ∈
Sk−1, we choose a set of ζn = ATqn with n = 1, · · · , N .
Since for any q, q′ ∈ Sk−1 and ζ′ = ATq′, we have∥∥∥∥∥X̄i diag

(
X̄T
i ζ
)◦2
X̄T
i

m
−
X̄i diag

(
X̄T
i ζ
′)◦2X̄T

i

m

∥∥∥∥∥
2

=
1

m

∥∥∥∥X̄i diag

[(
X̄T
i ζ
)◦2
−
(
X̄T
i ζ
′
)◦2]

X̄T
i

∥∥∥∥
2

(601)

≤
∥∥X̄i

∥∥2

2

m

∥∥∥∥diag

[(
X̄T
i ζ
)◦2
−
(
X̄T
i ζ
′
)◦2]∥∥∥∥

2

(602)

≤
∥∥X̄i

∥∥2

2

m

∥∥∥X̄T
i ζ + X̄T

i ζ
′
∥∥∥
∞

∥∥∥X̄T
i ζ − X̄T

i ζ
′
∥∥∥
∞

(603)

≤ L ‖q − q′‖2 (604)

Then the Lipschitz constant L is upper bounded by

L ≤
∥∥X̄i

∥∥2

2

m

∥∥∥X̄T
i A

T
∥∥∥

2

(∥∥∥X̄T
i ζ
∥∥∥
∞

+
∥∥∥X̄T

i ζ
′
∥∥∥
∞

)
(605)

≤ 2

m

∥∥X̄i

∥∥4

2
(606)

≤ 8θ2mB4. (607)

With triangle inequality, we have∥∥∥∥∥X̄i diag
(
X̄T
i ζ
)◦2
X̄T
i

m
− E [·]

∥∥∥∥∥
2

≤
∥∥∥∥∥X̄i diag

(
X̄T
i ζ
)◦2
X̄T
i

m
−
X̄i diag

(
X̄T
i ζn

)◦2
X̄T
i

m

∥∥∥∥∥
2

+

∥∥∥∥∥E
[
X̄i diag

(
X̄T
i ζ
)◦2
X̄T
i

m

]
−E
[
X̄i diag

(
X̄T
i ζn

)◦2
X̄T
i

m

]∥∥∥∥∥
2

+

∥∥∥∥∥X̄i diag
(
X̄T
i ζn

)◦2
X̄T
i

m
−E
[
X̄i diag

(
X̄T
i ζn

)◦2
X̄T
i

m

]∥∥∥∥∥
2

(608)

≤
∥∥∥∥∥X̄i

(
X̄T
i ζn

)◦2
X̄T
i

m
− E

[
X̄i

(
X̄T
i ζn

)◦2
X̄T
i

m

]∥∥∥∥∥
2

+ 2Lε (609)

Next, we are going to choose the ε-net to cover the sphere
of q with

ε =
c

4

θ (1− θ)
(2k − 1)L

min
q∈Sk−1

‖ζ‖44 , (610)

hence the number of samples N is bounded by

N =

(
3

ε

)k
(611)

≤ exp (−k ln ε) (612)

≤ C exp

[
k log

(
θB4k2m

1− θ

)]
. (613)

For n = 1, · · · , N , denote

Pi (qn) =

P

[∥∥∥∥∥X̄i diag
(
X̄T
i ζn

)◦2
X̄T
i

m
−E[·]

∥∥∥∥∥
2

≥
cθ(1− θ)‖ζn‖44

4(2k − 1)

]
(614)

together with union bound over all qn, we obtain

P

 sup
q∈R̂2C?

∥∥∥∥ X̄i diag(X̄T
i ζ)

◦2
X̄T
i

m − E [·]
∥∥∥∥

2

‖ζ‖44
≥ cθ (1− θ)

2(2k − 1)


≤

∑
qn∈R̂2C?

Pi (qn) (615)

≤ N max
qn∈R̂2C?

Pi (qn) (616)
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≤ 8k sup
q∈R̂2C?

exp

(
−

cm (1− θ)2 ‖ζ‖84
θk3 + θ (1− θ)B4k3 ‖ζ‖44

)
×

exp

(
k ln

(
3

ε

))
. (617)

Hence,

P

 sup
q∈R̂2C?

∥∥∥∥ X̄0 diag(X̄T
0 ζ)

◦2
X̄T

0

m − E [·]
∥∥∥∥

2

‖ζ‖44
≥ c

2
θ(1− θ)



≤
∑
i

P

 sup
q∈R̂2C?

∥∥∥∥X̄i diag(X̄T
i ζ)

◦2
X̄T
i

m −E [·]
∥∥∥∥

2

‖ζ‖44
≥ cθ(1− θ)

2(2k−1)


(618)

≤ (2k − 1) max
i

P

 sup
q∈R̂2C?

∥∥∥∥ X̄i diag(X̄T
i ζ)

◦2
X̄T
i

m − E [·]
∥∥∥∥

2

‖ζ‖44
≥ cθ (1− θ)

2(2k − 1)


(619)

≤ 16k2 sup
q∈R̂2C?

exp

(
−

c′m (1− θ)2 ‖ζ‖84
θk3 + θ(1− θ)B4k3 ‖ζ‖44

)
×

exp

(
k ln

(
3

ε

))
(620)

Therefore, by taking

m ≥ Cθ

(1− θ)2 min
{(

2C?µκ
2
)−4/3

, k2
}
k4 log3 k (621)

≥ C ′θk log

(
θkmB4

(1− θ) ‖ζ‖44

)
k3 + (1− θ)B4k3 ‖ζ‖44

(1− θ)2 ‖ζ‖84
(622)

and adding up failure probability, we obtain∥∥∥∥ 1

m
X0 diag

(
XT

0 A
Tq
)◦2

XT
0 − E [·]

∥∥∥∥
2

≤ cθ (1− θ)
∥∥∥ATq

∥∥∥4

4
(623)

with probability no smaller than 1 − c1 exp (−k) −
c2θ (1− θ)2

k−4 − c3 exp (−θk).

APPENDIX G
TOOLS

Lemma G.1 (Moments of the Gaussian Random Vari-
ables). If X ∼ N

(
0, σ2

)
, then it holds for all integer p ≥ 1

that

E [|X|p] = σp (p− 1)!!

[√
2

π
1p odd + 1p even

]
(624)

≤ σp (p− 1)!!. (625)

Lemma G.2 (Moments of the χ2 Random Variables). If
X ∼ χ2 (n), then it holds for all integer p ≥ 1,

E [Xp] = 2p
Γ (p+ n/2)

Γ (n/2)
(626)

=

p∏
k=1

(n+ 2k − 2) ≤ p!(2n)p/2 (627)

Lemma G.3 (Moments of the χ Random Variables). If
X ∼ χ (n), then it holds for all integer p ≥ 1,

E [Xp] = 2p/2
Γ (p/2 + n/2)

Γ (n/2)
≤ p!!np/2. (628)

Lemma G.4 (Moment-Control Bernstein’s Inequality for
Scalar RVs, Theorem 2.10 of [FR13]). Let X1, . . . , Xp be
i.i.d. real-valued random variables. Suppose that there exist
some positive number R and σ2 such that

E [|Xk|m] ≤ m!

2
σ2Rm−2, for all integers m ≥ 2.

Let S .
= 1

p

∑p
k=1Xk, then for all t > 0, it holds that

P [|S − E [S]| ≥ t] ≤ 2 exp

(
− pt2

2σ2 + 2Rt

)
. (629)

Corollary G.5 (Moment-Control Bernstein’s Inequal-
ity for Vector RVs, Corollary A.10 of [SQW15]). Let
x1, . . . ,xp ∈ Rd be i.i.d. random vectors. Suppose there
exist some positive number R and σ2 such that

E [‖xk‖m] ≤ m!

2
σ2Rm−2, for all integers m ≥ 2.

Let s = 1
p

∑p
k=1 xk, then for any t > 0, it holds that

P [‖s− E [s]‖ ≥ t] ≤ 2(d+ 1) exp

(
− pt2

2σ2 + 2Rt

)
.

(630)

Lemma G.6 (Moment-Control Bernstein’s Inequality for
Matrix RVs, Theorem 6.2 of [Tro12]). Let X1, . . . ,Xp ∈
Rd×d be i.i.d. random, symmetric matrices. Suppose there
exist some positive number R and σ2 such that

E [Xm
k ] � m!

2
σ2Rm−2I, (631)

−E [Xm
k ] � m!

2
σ2Rm−2I. (632)

for all integers m ≥ 2. Let S .
= 1

p

∑p
k=1Xk, then for all

t > 0, it holds that

P [‖S − E [S]‖ ≥ t] ≤ 2d exp

(
− pt2

2σ2 + 2Rt

)
. (633)

Lemma G.7 (Bernstein’s Inequality for Uncentered Ma-
trix RVs). The matrix Bernstein inequality states that for
independent random matrices M1, . . . ,Mn ∈ Rd1×d2 , if

σ2 = max

{∥∥∥∥∥
n∑
i=1

E[MiM
∗
i ]

∥∥∥∥∥ ,
∥∥∥∥∥
n∑
i=1

E[M∗
iMi]

∥∥∥∥∥
}
,

(634)
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and
‖Mi‖2 ≤ R a.s., (635)

then

P

[∥∥∥∥∥∑
i

Mi − E [·]
∥∥∥∥∥ > t

]
≤ (d1+d2) exp

( −t2/2
σ2 + 2Rt/3

)
.

(636)

Proof. For zero mean random matrices

M1 − EM1, . . . ,Mn − EMn ∈ Rd1×d2 , (637)

we have that

‖Mi − EMi‖2 ≤ 2R, (638)

and

0 �
n∑
i=1

E[(Mi − EMi)(Mi − EMi)
∗]

�
n∑
i=1

E[MiM
∗
i ], (639)

0 �
n∑
i=1

E[(Mi − EMi)
∗(Mi − EMi)]

�
n∑
i=1

E[M∗
iMi]. (640)

Plugging corresponding quantities back to Theorem
1.6 of [Tro12], we obtain that

P

[∥∥∥∥∥∑
i

Mi − E [·]
∥∥∥∥∥ > t

]
≤ (d1+d2) exp

( −t2/2
σ2 + 2Rt/3

)
.

(641)
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