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Abstract—The principle of compressed sensing indicates that
structured (sparse) signals can be reconstructed using far fewer mea-
surements than traditional pointwise sampling schemes, provided
those measurements are chosen to be incoherent with the basis
of sparsity. In applications of scanning probe microscopy (SPM),
images are acquired by raster scanning a point probe across a sample,
to create an image. Viewed from the perspective of compressed
sensing, this pointwise sampling scheme is inefficient, especially
when the target image is structured. Replacing point measurements
with delocalized, incoherent measurements has the potential to yield
order-of-magnitude improvements in scan time. However, imple-
menting the delocalized measurements of CS theory is challenging.
In this paper we study a partially delocalized probe construction, in
which the point probe is replaced with a continuous line, creating a
sensor which essentially acquires line integrals of the target image.
We show through simulations, rudimentary theoretical analysis, and
experiments that these line measurements can image sparse samples
far more efficiently than traditional point measurements. Despite
this promise, practical reconstruction from line measurements poses
additional difficulties: the measurements are partially coherent, and
real measurements exhibit nonidealities. We show how to overcome
these limitations using natural strategies (reweighting to cope with
coherence, blind calibration for nonidealities), culminating in an
end-to-end demonstration. Altogether, our results demonstrate the
potential of combining a CS-like methodology with SPM, and show
an example of how to redesign the reconstruction algorithm to cope
with a measurement model that does not meet the theory.

I. Introduction

Scanning probe microscopy (SPM) is a fundamental technique
for imaging on a small scale based on interactions between a
pointy probe and the sample of interest. Unlike traditional
optical microscopy, the resolution achievable by SPM is not
constrained by the diffraction limit, making SPM especially
advantageous for nanoscale, or atomic level imaging, which has
widespread applications in chemistry, biology and materials
science [1].

Conventional implementations of SPM typically adopt a raster
scanning strategy, which utilizes an probe with a small and
sharp tip, to form a pixelated heatmap image via point-by-point
measurements from interactions between the probe tip and
the surface. Despite their capability of nanoscale imaging, SPM
with pointwise measurement is inherently slow, especially when
scanning a large area or producing high-resolution images.
When the target signal is highly structured, compressed

sensing (CS) suggests it is possible to design a sampling scheme
in which the number of measurements is largely dependent
on the signal complexity, instead of the signal size, from
which the signal can be efficiently reconstructed algorithmically.
In nanoscale microscopy, images are often spatially sparse
and structured. CS theory suggests for such signals, localized
measurements such as pointwise samples are inefficient. In

Fig. 1: Scanning electrochemical microscope with
line probe. Left: the lab made SECM device with
line probe. Mounted on an automated probe arms
with a rotating sample stage. Right: closeup side
view of the line probe near the sample surface.

contrast, delocalized, spatially spread measurements are better
suited to reconstructing a sparse image.
However, in contrast to other practical implementations of

CS, such as in MRI[2] or in fluorescence microscopy[3], which
incorporate a spatially dense sampling pattern, in SPM it is
hard to devise similar scanning method cost efficiently due to
the probe manufacture limitations. This motivates us to study
an implementation of SPM in which the probe is semi-localized,
and is can be easily fabricated.
To this end, we study and implement the continuous line

electrode probe (CLP)[4] for a specific type of SPM, called
scanning electrochemical microscopy (SECM), which measures
the chemical reaction between the probe and electroactive parts
of the object[5], [6]. In SECM-CLP, the working end of the
probe forms a straight line, produces a single measurement
by collecting the accumulated current induced by interaction
between the probe and the object surface. These line probe
measurements are semi-localized, which samples spatially
sparse image more efficiently then the pointwise measurements,
and has great advantage for image resolution since a thin and
sharp line probe can be easily manufactured.
Nevertheless, in practice, reconstructing an image from line

scans faces two major challenges: (i) unlike measurement models
in CS theory, the line scans are not incoherent to the spatially
sparse signal, and (ii) the line probe has very unconventional
point spread function comparing to point measurements. In this
paper, we will discuss these challenges from the perspective of
physical properties of line scans, and address how to reconstruct
the microscopic images accordingly from our knowledge of
these measurements. We conclude with real-data experiments
demonstrating accurate reconstruction of a sparsely populated
sample from line scans.
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Fig. 2: Scanning procedure of SECM with continuous line electrode probe. (Left): A signal measurement from the line
probe. The grey line in the figure represents the line probe, orienting in direction uθ = (cos θ, sin θ), and is sweeping
in direction u⊥θ = (sin θ,− cos θ). When it comes across the point wi where t = 〈u⊥θ , wi〉, it integrates over the contact
region `θ,t between the probe and substate and produces a measurement Rθ(t). Right: The complete line scans is done by
sweeping the probe with different angles. In each sweeps, we measures equispaced samples.

II. Line scans measurement model
To implement the line scans for SECM, a line probe (Figure 1)

is mounted on an automated arm which positions the probe
onto the sample surface. The line scan signal is generated
by placing this line probe in various places and angles, and
measures the integrated current induced by the interaction
between the line probe and the electroactive part of the sample.
In a pragmatic scanning procedure (Figure 2, right), the user
will elect distinct scanning angles, where in each scan of angle
θ, the line probe is oriented in direction uθ = (cos θ, sin θ)
and sweeps along the normal direction. Each of the sweep of
probe generates a line, and the complete SECM line scans is
the collection of lines of various scanning angles.

A. Line projection
Mathematically, we define a single line measurement from

signal image with an ideal probe as the line integral of the image.
When the probe body is oriented in direction uθ = (cos θ, sin θ)
at position t (Figure 2, left), then the line integral of Y over
the contacting surface between the probe and the object, is
characterized as integration of Y over the line `θ,t, where the
lines is defined as

`θ,t := {w ∈ R2
∣∣ 〈u⊥θ , w〉 = t}, (II.1)

and accordingly the line integral of Y at scanning angle θ and
position t, Lθ[Y ](t), can be characterized as

Lθ[Y ](t) :=
∫
`θ,t

Y (w) dw

:=
∫
s
Y
(
s · uθ + t · u⊥θ

)
ds. (II.2)

Operate the line integral of direction uθ across all locations
t naturally forms a line Lθ[Y ]. In mathematics, the operation
Lθ : L2(R2)→ L2(R) projects the image onto a one dimensional
line in direction uθ , is known as the line projection.

A complete, ideal scans of image Y is the line projection in m
directions of angles {θi}mi=1, we denote the m-line projections
as LΘ : L2(R2) → L2(R × [m]), which produces m different
lines as

LΘ[Y ] := 1√
m

[Lθ1 [Y ], . . . ,Lθm [Y ]]

:= 1√
m

∑m
i=1 Lθi [Y ] . (II.3)

B. Line scans
For imaging systems in reality such as point probe microscope

and focused optimal instruments, the point spread function
(PSF) is often used to characterize the lowpass impulse response
of the system due to the natural physical limitation. Similarly
for line scans in practice, the spread effect of line probe blurs
the line scan along its sweeping path, accordingly the actual
line scans are modeled as the convolution between a one-
dimensional PSF and the line projections.
Mathematically, we denote the PSF of line probe as ψ and

the line projections {Lθi}
m
i=1, then the continuous line scans

{R̃i}mi=1 of an signal image Y can be characterized as

R̃i = 1√
m
ψ ∗ Lθi [Y ], i = 1, . . . ,m; (II.4)

and the collective m line scans of the image Y in all directions
is denoted as

R̃ = 1√
m

∑m
i=1ψ ∗ Lθi [Y ] = ψ ∗ LΘ [Y ] . (II.5)

In SECM, the major characteristic of the PSF for line probe is
it skews in one side and has a long tail in the sweeping direction.
When the potential of probe is adjusted to a sufficiently
negative value, it creates a diffusion layer of much greater
size then the probe width. Electricity current is conducted as
the layer contacts the electroactive species[6], causing a single
line measurement from the species spreading in the direction
of probe pathway. An instance of PSF of line probe in shown
in Figure 3.
Finally the line scan measurement Ri = S{R̃i} ∈ Rn is

the n-equispaced samples of the continuous line R̃i, and the
collection of m discrete lines R = [R1, . . . ,Rm] ∈ Rn×m is the
observed signal from SECM-CLP device.

III. Promises and problems of line scans
The major component of the line scans, the line projections
Lθ , enjoy two major advantages as an image sampling model:
(i) comparing to the pointwise measurements, the line projec-
tions are more delocalized, hence can be more efficient when
measuring a spatially sparse signal; and (ii) the sharp edge
of the line probe is capable of detecting the directional high
frequency components in the image.



Nevertheless, from a CS perspective, using line projection
to sample a spatially sparse signal comes with an apparent
disadvantage—the line measurements are not incoherent to
the sparse signal representing bases. This means the number
of sample required for exact reconstruction with line scans
may not be optimal, it also is a cause for concern when image
reconstruction, the conventional sparse recovery method may
not lead to a satisfactory result.

As with most imaging systems, deblurring from the effect of
PSF has always been an important and fundamental task for
imaging algorithm. We will also demonstrate some example how
PSF presents in the system of CLP, and address an algorithm
solution to it in the next section.
A. Compressed sensing of line projections for highly localized image
Compressed sensing, in its simplest form, asserts that if

the target signal has sparse representation, then only a few
measurements that are incoherent to the representing basis will
suffice for exact signal reconstruction. Since in many cases of
microscopic imaging, the underlying signal is often structured
and spatially localized, CS theory suggests the delocalized
measurements, such as line projections, is more preferable then
point measurements for more efficient scanning speed.

Specifically, when the signal image is highly spatially sparse
and its sparse component are well separated, the line projections
can be a very efficient measurement model. A concrete example
is demonstrated in Lemma III.1, where we assume the sparse
component of the image signal are small and separated discs;
if the radius of the discs are sufficiently small, then, perhaps
surprisingly, only three continuous line projections is required
to exactly reconstruct the image.

Lemma III.1. Consider an image consists of λ ≥ 2 discs with centers
are at least d-separated1. If the disc radius satisfies R < Cd/(2λ2),
then three line scans with probe direction chosen independent
uniformly at random suffice to recover the image with probability at
least 1− C.

Proof. See Section VI-B.

B. Coherence between line projections and localized image in practice
While the microscopic images are often sparse in spatial

domain, they rarely satisfy the conditions of Lemma III.1,
in which local features are uncharacteristically small. The
performance of line measurements can degrade when the size
of the local feature increases. We will show this with a simple
study of line scan measurement model.

Consider two different local feature profiles of different size
δ and D, were δ is a delta measure representing a profile
with infinitesimally small diameter, and a disc profile D being
appropriately sized. Comparing the coherence of the line
projected profiles for the same feature at a pair of different
location wi,wj with projection angle randomly selected, then
the profile with small diameter give

Eθ
〈
Lθ[δwi ],Lθ[δwj ]

〉
= 0, (III.1)

on the other hand, the average coherence with larger diameter
can be approximated by

Eθ
〈
Lθ[D ∗ δwi ],Lθ[D ∗ δwj ]

〉
≈
(

1 +
‖wi−wj‖22
diam2(D)

)−1/2

(III.2)

1For data points w1, . . . ,wλ, the smallest distance between two
points mini 6=j ‖wi −wj‖2 ≥ d

−10 −5 0 5 10
0

1

Distance/mm

C
ur
re
nt
/A

Estimated PSF Ψ

θCLP = 65◦

θCLP = 45◦

Fig. 3: The point spread function of line probe.
The PSF of line probe is skewed in the probe
sweeping direction. Left: an estimation of PSF of
line probe with close form used for reconstruction,
Right: a software simulated line scan PSF, when
the contacting angle varies, the shape and intensity
of PSF changes accordingly.

which, unsurprisingly, can be up to one when the profile is
much larger then the the distances; even the two discs are
separated, say diam(D) ≤ ‖wi −wj‖2, the average coherence
between the discs in line scans can still reach 1/

√
2.

Due to the coherence phenomenon of line scans, we expect
the number of line measurements for sparse recovery will not be
as optimal as CS theory suggested; also, it will cause problems
when operating image reconstruction with conventional sparse
recovery method such as Lasso. We will address these issues
by applying reweighting method in sparse recovery, which will
elude with detail in the next section.

C. Stability of point spread function of line scans

Another major difference of CLP scans and the point probe
measurements is the unique character of PSF. In some cases,
the PSF can be structurally different due to some physical
phenomenon from scanning procedure. For instance in Figure 3
right, we show when the contacting angle between the probe
and the sample varies, the corresponding PSF changes drasti-
cally in both magnitude and shape, which has been one of the
main source of error during reconstruction in our experience.
A remedy of the instability of PSF, is to parameterize the

PSF to accommodate all possible variations. In Figure 3 left,
we demonstrate an instance of estimated PSF, in which the
shape and size can be calibrated in the course of optimization
during image reconstruction. We will show an example when
the PSF is varying from each line scans, how is this approach
reconstruct image from unstable measurements.

IV. Reconstruction of localized signal from line scans

A. Sparse recovery with Lasso for ideal signal

In the following experiments, we will consider a represen-
tative class of image, whose electroactive heatmap Y can
be characterized as several superposed reactive species D
appearing at different locations W = {wj}|W|j=1 ⊆ R2 with each
of its heatmap intensity denoted as {αj}|W|j=1 ⊆ R+ (Figure 4).
Define the activation map as X0 =

∑|W|
j=1 αjδwj which encodes

the locations and intensities of D as summation of |W| discrete
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Fig. 4: Signal model of superposing electroactive species at
different location. Left: a closeup for single electroactive disc
D. Right: the heatmap image of the substate Y is convolution
between electroactive species D and its activation map X0.
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Fig. 5: Phase transition of fixed image size (left)
and fixed density (right) on support recovery with
Lasso. Each pixel is the average of 50 experiments.

Dirac measures δw2, then the image Y can simply be written
as the convolution between the species D and measure X0:

Y = D ∗X0 =
∑|W|
j=1 αjD ∗ δwj . (IV.1)

Then the imaging reconstruction problem can be cast as finding
the best fitting sparse map discretized sparse map X̂ from line
scans R = S{Ψ ∗ LΘ[D ∗ X0]}, in which the reconstructed
image will be D ∗ X̂ .
Notice that the discrete samples, the convolution and the

line projections are all linear, hence the operator from the map
X0 to the lines R is also linear. A natural method to solve for
X0 is by minimizing the lasso objective under the line scan
measurement model.

min
X≥0

λ
∫
|dX|+ 1

2
‖R− S{Ψ ∗ LΘ[D ∗X]}‖22 . (IV.2)

We study the performance of discretized version of (IV.2) where
X0 is assume to be supported on the grid, and the PSF to
be an ideal delta function. Figure 5 shows the reconstruction
performance when with synthetic data were generated by
randomly allocated discs of 100 µm in diameter and center-
to-center are separated by 50 µm. The number of line scans
required in both scenario (fix area/fix density) are lower when
fewer discs are present, showing that when signal is sparser,
the line scans indeed is more efficient then the point probe.

B. Reweighted Lasso for coherent measurement
To study how the coherence of line scans affects image

reconstruction, ignore the discrete sampler and consider the
continuous lines scans, we define the G ∈ R|W| as the Gram
matrix of linear map LΘ[D ∗ · ] at locations W as

Gij :=
〈
ψ ∗ LΘ [D ∗ δwi ] ,ψ ∗ LΘ

[
D ∗ δwj

]〉
(IV.3)

2The Dirac measure satisfies
∫
D(w)δwi (dw) = D(wi) for any

continuous and compactly supported D. And has total variation∫
|δwi | (dw) = 1, see [7].

Original image Lasso w/big λ Lasso w/small λ Reweight Lasso

Fig. 6: SECM image reconstruction with pure
lasso and reweighted lasso. We apply three al-
gorithm to reconstruct the image (left) with 6
line scans with simulated PSF in Figure 3. The
reconstruction from lasso with large λ (mid left)
has unbalanced magnitude due to the coherence
of line scans, and from lasso with small λ (mid
right) gives blurry image by weakened sparsity
regularizer. Reweighing lasso can adjust the sparse
regularizer in each iteration and consistently gives
good result.

Scan lines Original image Reweight only Reweight & Rescale

Fig. 7: SECM image reconstruction with pure
lasso and reweighted lasso. We simulate a line
scan with uneven magnitude (left), and reconstruct
the image (mid left) with two algorithm. The
algorithm with reweighting only (mid right) cannot
identify the correct support; where the reweighting
plus calibration (right) method receives good result.

and the solution X of program (IV.2) on W can be written as

XW = X0W − λG−11. (IV.4)

Since the line scans is coherent for W , many entries of G will
has a large, positive number sometime close to the diagonal
entry, hence G can sometimes be very ill-conditioned. When
λ is large, this will cause the solution of X from Lasso has
unfavorable solutions (Figure 6).

We apply reweighting strategy[8], iteratively solves the objec-
tive with updated λ(k)

ij ← (X
(k−1)
ij + ε)−1 at k-th iterate.

C. Image reconstruction algorithm from line scans

Since the PSF can has varying between each line scans,
we calibrate it via optimizing these parameters p ∈ P and
solve it using the iPalm algorithm[9]. We recover Y by solving
discretized X ∈ Rn×n which approximates X0 by minimizing
Lasso-type objective:

min
X≥0,p∈P

∑n
i,j=1 λijXij

+
∑m
i=1

1
2
‖S{ψ ∗ Lθi {pi} [D ∗X]} −Ri‖22 (IV.5)

V. Real data experiments

We present two sets of experiments in Figure 8 and Fig-
ure 9 to demonstrate an end-to-end result of SECM-CLP with
algorithmic reconstruction.
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Fig. 8: Real signal experiments for 3 dots [10]. In
which we show the comparison with point probe,
where with line probe we can more accurately
locate the position of the dot, even compare to
the point probe.
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Fig. 9: Real signal experiments for 8, 10 dots.
Here we show our algorithm can reconstruct a
slightly more complicated signal, where 8,10 dots
are presented. Our algorithm successfully recon-
struct the image, with the sparse location map close
to discrete. The image resolution is 10µm in each
pixels.

VI. Summary & Discussion
We develop a novel scanning probe microscope technique

involving the use of line probe on from design of the device and
the algorithm. It operates line integral for each measurement,
enables non-local measurement for sparse recovery in practice,
which speeds up the microscopic for image with localized sparse
structure. Despite the existence of some nonidealities of line
scans, we can successfully reconstruct image with algorithmic
approach.

Appendix
A. Adjoint of line projection

The adjoint operator3 of line projections L∗Θ : L2([m]×R)→
L2(R2) is deeply connected with the well-known tomography
image reconstruction technique back projection. The adjoint of a
single line projection L∗θi : L2(R)→ L2(R2) of scanning angle
θi is the back projection of a line scan Ri generates an image
whose value over `θi,t is equivalent to Ri(t):

L∗θi [Ri](w) = Ri(t), ∀w ∈ `θi,t, (VI.1)

3We invoke the canonical definition of inner product of L2-space
for both image and lines. For any Y ,Y ′ ∈ L2(S1), then 〈Y ,Y ′〉 =∫
Y (w)Y ′(w) dw; and for any R,R′ ∈ L2(R × [m]), we have
〈R,R′〉 =

∑m
i=1

∫
Ri(t)R

′
i(t) dt.

then incorporate with definition of `θi,t in (II.1), we obtain a
simpler form for L∗θi as

L∗θi [Ri](w) = Ri(〈u⊥θiw]〉). (VI.2)

Extending the derivation of (VI.2) to m-lines R, on which
we apply back projection L∗Θ and gain an image as the
superposition of all m back projected lines of different scanning
angles.

L∗Θ[R](w) = 1√
m

∑m
i=1 L

∗
θi

[Ri](w)

= 1√
m

∑m
i=1Ri(

〈
u⊥θi ,w

〉
). (VI.3)

In the following proposition, we show that the line projec-
tions defined in (VI.3) is indeed the adjoint operator of line
projections.

Proposition VI.1. The back projection L∗Θ in (VI.3) is the adjoint
of line projection LΘ in (II.3), where

〈R,LΘ[Y ]〉 = 〈L∗Θ[R],Y 〉 . (VI.4)

Proof. For any lines R ∈ L2([m]× R) image Y ∈ L2(S1), and
any angles Θ = {θ1, . . . , θm},

〈R,LΘ[Y ]〉 = 1√
m

∑m
i=1

∫
Ri(t)Lθi [Y ](t) dt

= 1√
m

∑m
i=1

∫
Ri(t)

∫
Y (suθi + tu⊥θi) ds dt

= 1√
m

∑m
i=1

∫
Ri

(〈
w,u⊥θi

〉)
Y (w) dw

=
∫ (

1√
m

∑m
i=1Ri

(〈
w,u⊥θi

〉) )
Y (w) dw

= 〈L∗Θ[R],Y 〉 . (VI.5)

The first equality comes from the definition of inner product in
lines space; the second comes from (??); the third uses change
of variable where w = suθ + tu⊥θ for every θ; the fourth comes
from linearity; and the last equality from definition of inner
product in image space.

B. Proof of Lemma III.1
Proof. We first argue that with high probability, no pair of discs
overlaps within any line scan. Let θj ∼i.i.d. Unif[−π, π) denote
the j-th scanning angle. The probability that any particular pair
of two discs overlap is bounded as

P [Two dots overlap on line scanRj ]

≤ P
[
θi ∈

[
− sin−1 ( 2R

d

)
, sin−1 ( 2R

d

)]]
= 2

π
sin−1 2R

d
(VI.6)

Using the assumption that R < d
8
to bound sin−1( 2R

d
) < 2πR

3d

and summing the failure probability over all three line scans
and λ(λ−1)

2
pairs of dots, we obtain:

P [Two of the λ dots overlap at eitherR1,R2,R3]

≤ 3λ2

2
· 2
π
P [Two dots overlap on line scanR1]

≤ 3λ2

π
sin−1 ( 2R

λ

)
≤ 2λ2R

d

≤ C (VI.7)

Thus, with probability at least 1− C, no pair of discs overlaps
in any line scan.

Since there are no overlapping dots in any line, a single line
scan R(t) with scan angle θ has largest magnitude at points t
where the probe body passes the center of a disc. These points
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Fig. 10: Proof idea for sufficiency of identifying disc
location via three line scans. The grey dashed lines
are back projection lines, forming the set ∪λi=1`(θ,w).
Intersection of three such line sets is exactly the set of
dot centers, which generate the peak measurements
in R1,R2 and R3.

of largest magnitude can be written as
{〈
u⊥θ ,wi

〉
, i = 1, . . . , λ

}
on R. Using these points, for every location wi and angle θ,
we define a back projected line `θ,wi as a subset of R2, where

`θ,ti := {w ∈ R2
∣∣ 〈u⊥θ , w〉 = 〈u⊥θ , wi〉}, (VI.8)

which extends from the point
〈
u⊥θ ,wi

〉
in the direction of the

probe body uθ . Every disc center wi lies in the intersection
of three such lines, corresponding to scan angles θ1, θ2, θ3. We
argue that with probability one, the converse also holds: every
intersection of three such lines is exactly the center wi of some
disc.
Without loss of generality, write wij = `(θ1,wi) ∩ `(θ2,wj) as

intersections of back projected lines from probe angle θ1, θ2

that passed different disc center locations wi,wj respectively.
Notice that wij is not the actual disc location for either wi or
wj since there is no overlaps in the line scan R1,R2 from (VI.7).
Suppose the point wij is in the third line set ∪k`(θ3,wk), then
there exists some disc center wq such that the probe direction
uθ is identical to the orientation of line formed by two points
wij and wq . However since θ3 is generated uniform randomly,
we can conclude that for any i, j, q we have

P
[
∃ q ∈ 1, . . . , k s.t. wij ∈ `(θ3,wq)

]
= 0. (VI.9)

The direction is not aligned with the line formed by wij ,wq
almost surely, implies that wij is not in line intersection for
every i 6= j. Thus every intersection of three lines is one of
the disc centers. The proof idea is demonstrated graphically in
Figure 10.
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