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Abstract—Short-and-sparse deconvolution (SaSD) is the
problem of extracting localized, recurring motifs in signals
with spatial and/or temporal structure. Variants of this problem
arise in applications such as image deblurring, microscopy,
neural spike sorting, and more. Short-and-sparse deconvolution
is challenging in both theory and practice. Natural optimization
formulations are nonconvex. Moreover, practical deconvolution
problems involve smooth motifs (kernels) whose spectra decay
rapidly, resulting in poor conditioning and numerical chal-
lenges. This paper is motivated by recent theoretical advances
[ZLK`17], [KZLW19], which characterize the optimization
landscape of a particular nonconvex formulation of SaS-BD.
This is used to derive a provable algorithm which exactly
solves certain non-practical instances of the SaSD problem. We
leverage the key ideas from this theory (sphere constraints,
data-driven initialization) to develop a practical algorithm,
which performs well on data arising from a range of application
areas. We highlight key additional challenges posed by the ill-
conditioning of real SaSD problems, and suggest heuristics
(acceleration, continuation, reweighting) to mitigate them. Ex-
periments demonstrate both the performance and generality of
the proposed method.

I. Introduction
Many signals arising in science and engineering can

be modeled as superpositions of basic, recurring motifs,
which encode critical information about a physical process
of interest. Signals of this type can be modeled as the
convolution1 of a short kernel a0 P Rp0 (the motif) with
a longer sparse signal x0 P Rm (m " p0) which encodes
the locations of the motifs in the sample:

y “ a0 f x0. (I.1)

We term this a short-and-sparse (SaS) model. In practice,
often only y is directly observed. Short-and-sparse deconvo-
lution (SaS-D) is the problem of recovering both a0 and
x0 from y. Variants of this problem arise in areas such
as microscopy, astronomy, and neuroscience. SaSD is a
challenging inverse problem in both theory and practice.
Natural formulations are nonconvex, and until recently
very little algorithmic theory was available. Moreover,
practical instances are typically ill-conditioned, due to the
spectral decay of the kernel a0.
This paper is motivated by recent theoretical advances

in nonconvex optimization – and in particular, on the
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1For simplicity, (I.1) uses cyclic convolution; algorithms are

results also apply to linear convolution with minor modifications.

geometry of SaSD. [ZLK`17], [KZLW19] study particular
optimization formulations for SaSD and show that the
landscape is largely driven by the problem symmetries of
SaSD. They derive provable methods for idealized problem
instances, which exactly recover pa0,x0q up to trivial
ambiguities. While inspiring, these methods are not practical
and perform poorly on real problem instances. In this
paper, we leverage ideas from this theory, in combination
with heuristics that address the conditioning of practical
problems, to build a method that performs well on data
arising in a range of application areas.

Notation: Projection of a vector v P Rp onto the sphere
Sp .
“ Sp´1 is denoted by PSppvq

.
“ v{ }v}2, and Pzpvq

.
“

v ´ xv,zyz denotes projection onto the tangent space of
z P Sp. The Riemannian gradient of a function f on the
sphere is given by grad f

.
“ PSp ˝∇f .

II. The role of symmetry in SaSD
A. Symmetry and shift-coherence
A immediate, but important, observation of the SaSD

problem is that it admits multiple equivalent solutions.
This is purely due to the cyclic convolution between a0

and x0, which exhibits the trivial ambiguity2

y “ a0 f x0 “ pαs` ra0sq f

ˆ

1

α
s´` rx0s

˙

,

for any nonzero scalar α and cyclic shift s` r¨s. Since
recovery of a0 and x0 is equally acceptable up to some
scaled shift, these scale and shift symmetries is largely drive
the behavior of certain nonconvex optimization problems
formulated for SaSD. Another important aspect of SaSD is
the shift-coherence of its kernel,

µpa0q
.
“ max

̀“0
|xa0, s` ra0sy| P r0, 1s , (II.1)

Geometrically, SaSD is easier when µpa0q is small, as
the shifts of a0 are further apart on the sphere. A small
µpa0q also allows SaSD to be solved with denser x0, as
overlapping shifts are easier to distinguish (see Figure 1).

B. Landscape geometry under shift-incoherence
A natural approach to solving SaSD is to formulate it as

a suitable optimization problem. For instance, consider the
bilinear-lasso (BL) problem, which minimizes the squared
error between the observation y and its reconstruction
af x, plus a `1-norm sparsity penalty on x,

min
aPSp,xPRm

„

Φλpa,xq
.
“

1

2
}y ´ af x}22 ` λ }x}1



.

(BL)

2We therefore assume w.l.o.g. that }a0}2 “ 1 in this paper.



In the later subsections, we will see that the recovered
kernel length p should be set slightly larger than p0.
The bilinear-lasso is a nonconvex optimization problem,

as the shift symmetries of SaSD create discrete local
minimizers in the objective landscape. The regularizing
effect created by problem symmetries is a fairly general
phenomenon [SQW15] and, as [KZLW19] shows, its
influence extends far beyond local minimizers. The authors
there analyze the dropped quadratic (DQ) objective

ΦDQpa,xq » Φλpa,xq, when µpaq » 0.

As we will see, this non-practical objective turns out to be
a valid simplification for (BL) when the true kernel is itself
incoherent, i.e. µpa0q » 0. We are particularly interested
in the objective of the marginalized formulation3

min
aPSp

”

ϕDQpaq
.
“ min

xPRm
ΦDQpa,xq

ı

, (DQ)

since it removes x via convex minimization and reduces
the study of the objective landscape down to a manifold
of lower dimension p´ 1.

Regularity in the span of a few shifts: Under suitable
conditions on a0 and x0, ϕDQ enjoys a number of nice
properties on the sphere. For instance, suppose a »

α1s`1 ra0s`α2s`2 ra0s P Sp is near the span of two shifts4 of
a0. If α1 » 1 (or α2 » 0), [KZLW19] asserts that a is in a
strongly convex region of ϕDQ with a single minimizer near
s`1 ra0s, and vice versa. Near the balanced point α1 » α2,
however, both s`1 ra0s and s`2 ra0s exert their influence on
ϕDQ, creating a saddle-point characterized by large negative
curvature along the direction of the two shifts, and positive
curvature in orthogonal directions (Figure 2).
This characterization of ϕDQ – strong convexity near

single shifts, and saddle-points near balanced points –
extends to regions near superpositions of several shifts. In
this case, regions between balanced points and individual
shifts are characterized by a large negative gradient,
pointing towards regions spanned by smaller subsets of
shifts. It is this landscape geometry which makes efficient
recovery of single shifts of a0 possible.

Optimization on the sphere: These nice properties of
ϕDQ depend strongly on its restriction to the sphere. By
uniformly increasing the curvature of ϕDQ [AMS09], the
sphere prevents spurious local minimizers from being
created as a result of any particular regions of the constraint
surface with nonsmoothness or large positive curvature5.

C. Data-driven initialization
The landscape structure of ϕDQ makes single shifts of a0

easy to locate, if a is initialized near a span of a few shifts.
Fortunately, this is a relatively simple matter in SaSD, as
y is itself a sparse superposition of shifts. Setting p “ 3p0 ´ 2,
we initialize a by randomly choosing a length-p0 window
ỹi

.
“ PSp

`

ryi yi`1 . . . yi`p0´1s
˘

and setting

ap0q
.
“ ´ gradϕDQ

`

r0p´1 ỹi 0p´1s
˘

. (II.2)

3x0 can be recovered via convex optimization once a0 is found.
4Setting p ą p0 ensures that Sp contains at least two shifts.
5Conversely, the popular `1-norm constraint set tends to create

trivial sparse minimizers w.r.t. a [LWDF09], [BVG13], [ZLK`17].
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Fig. 1: Sparsity vs. coherence [KZLW19]: Smaller shift-
coherence µ allows for higher sparsity rate θ (probability
for any entry to be nonzero), and vice versa. With
increasing difficulty: (a) A single spike δ, with µpδq “ 0;
(b) a0 „ UnifpSp0 q has µpa0q « p

´1{2
0 , allowing for

θ P Opp´3{4
0 q ; (c) sparsity cannot exceed θ P Opp´1

0 q for
a smooth low-pass filter, which has µpa0q » constant.

a) b) c)

Fig. 2: Geometry of ϕDQ near superpositions of shifts
[KZLW19]. Typical plot of (a) the strongly convex
region of near a single shift; (b) the region between two
shifts, containing a saddle-point with negative curvature
pointing towards each shift, and positive curvature
pointing away; (c) the span of three shifts of a0.

Here, zero-padding with 0p´1 P Rp´1 and applying the
Riemannian gradient helps to remove truncation effects
from the window ỹi [KZLW19]. However, the most im-
portant aspect of this initialization scheme is using the
window ỹi to put a near the span of a few shifts of a0.

D. A provable algorithm
With this initialization strategy, successful recovery of

a0 and x0 now depends entirely on the regional landscape
of ϕDQ. [KZLW19] shows that their characterization of the
regional geometry of ϕDQ holds w.h.p. when the sparsity-
coherence tradeoff p0θ Æ pµpa0qq

´1{2 is satisfied. This
implies that several popular descent methods, such as
those from [GHJY15], [JNJ17], [AMS09], can be expected
to locate some signed shift of a0 with proper initialization6.

III. Designing a practical SaSD algorithm
The dropped-quadratic problem (DQ) shows us an

example of a regional landscape regularized by the sym-

6[KZLW19] also specifically proves algorithmic convergence for
an algorithm based on the curvilinear-search method [Gol80].
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metries of SaSD, and is nice enough that recovery up to a
signed shift can be expected by popular first and second-
order descent techniques when µpa0q » 0.
As SaS applications are often motivated by sharpening

or resolution tasks [HBZ09], [CFG14], [CE16], a practical
algorithm must be able to handle cases where motifs are
smooth and shift-coherent (i.e., µpa0q « 1). The (DQ)
problem, on the other hand, is a valid approximation
to the bilinear-lasso in only the most incoherent cases
and fails otherwise, as exhibited by its poor sparsity-
tradeoff rate. The correct starting place for solving SaSD in
practical problem instances, therefore, is to rely on the (DQ)
formulation as a “metaphor” for the bilinear-lasso under
idealized settings (see Figure 5), and introduce additional
computational heuristics, which we will describe below, to
remedy the negative influences of large coherence.

A. Optimization via accelerated alternating descent
When a0 is shift-coherent, the Hessian of Ψλ becomes ill-

conditioned as a converges to single shifts, implying that
the objective is akin to a “narrow valley”. This is known to
cause excessive oscillations and slow convergence for first-
order methods [Nes13] (Equation (III.1)). The momentum
method [Pol64], [BT09] dampens such oscillations using an
additional inertial term. For instance, consider augmenting
gradient descent on some smooth fpzq with the term w,

wpkq Ð zpkq ` α ¨ pzpkq ´ zpk´1q
q (III.1)

zpk`1q
Ð wpkq ´ τ ¨∇fpwpkqq, (III.2)

where τ is the stepsize and α the inertial parameter7.
As illustrated in Fig. 3, this additional term substantially
reduces oscillations and improves convergence for ill-
conditioned problems. For strongly convex problems, mo-
mentum improves iteration complexity8 from O

`

κ logp 1
ε
q
˘

to O
`?
κ logp 1

ε
q
˘

whilst retaining a similar computational
complexity [BT09]. For nonconvex and nonsmooth prob-
lems momentum also improves escape from saddle-points
[JNJ17] and convergence to local minimizers [PS16].
In Algorithm 1, we provide an inertial alternating

descent method (iADM) for finding local minimizers of
Ψλ. It modifies iPALM [PS16] to perform updates on a
via retraction on the sphere [AMS09]9. Computational
performance on experiments is demonstrated by Figure 8.

B. Homotopy continuation
It is also possible to improve optimization by modifying

the objective Ψλ directly through the sparsity penalty
λ. Variations of this idea appear in both [ZLK`17] and
[KZLW19], and can also help to mitigate the effects of
large shift-coherence in practical problems.
When solving (BL) in the noise-free case, it is clear

that larger choices of λ encourage sparser solutions for
x. Conversely, smaller choices of λ place local minimizers

7Setting α “ 0 reverts to vanilla gradient descent.
8κ denotes the condition number of the Hessian, and ε the

solution precision.
9The stepsizes tk and τk are obtained by backtracking

[NW06], [PS16] to ensure sufficient decrease for Ψλ
`

apkq,wpkq
˘

´

Ψλ
`

apkq,xpk`1q
˘

and Ψλ
`

zpkq,xpk`1q
˘

´Ψλ
`

apk`1q,wpk`1q
˘

.

a) gradient descent b) with momentum

Fig. 3: Momentum acceleration. a) Iterates of gradient
descent oscillate on ill-conditioned functions. b) Momen-
tum dampens oscillation and speeds up convergence.

a) λ “ 5ˆ 10´1 b) λ “ 5ˆ 10´2 c) λ “ 5ˆ 10´3

Fig. 4: Bilinear-lasso objective ϕλ on the sphere Sp,
for p “ 3 and varying λ. The function landscape of ϕλ
flattens as sparse penalty λ decreases from left to right.

a) dropped-quadratic b) bilinear-lasso

Fig. 5: The dropped-quadratic and bilinear-lasso loss
in the span of three shifts. They exhibit qualitatively
similar geometric properties, such as convexity near
single-shifts, and negative curvature at balanced points.

of the marginal objective ϕλpaq .“ minx Ψλpa,xq closer to
signed-shifts of a0 by emphasizing reconstruction quality.
When µpa0q is large, however, ϕλ becomes ill-

conditioned as λÑ 0, due to the poor spectral conditioning
of a0. This leads to severe flatness near local minimizers,
as illustrated by Figure 4, and can also lead to the creation
of many spurious local minimizers when noise is present.
At the expense of precision, larger values of λ force x to
be sparse, making Ψλ (resticted) strongly convex when a
is fixed. It is therefore important both for fast convergence
and accurate recovery for λ to be chosen appropriately.

When problem parameters – such as the severity of noise,
or p0 and θ – are not known a priori, a homotopy continuation
method [HYZ08], [WNF09], [XZ13] can be used to obtain
a range of solutions for SaSD. Using initialization (II.2),
Algorithm 2 first obtains a rough estimate pâp1q, x̂p1qq by
solving (BL) with iADM using a large choice for λp1q;
this estimate is refined by gradually decreasing λpnq to
produce the solution path

 

pâpnq, x̂pnq;λpnqq
(

. Homotopy
also ensures that x remains sparse along the solution path,
effectively providing the objective Ψλ with (restricted)
strong convexity w.r.t. both a and x throughout opti-
mization [ANW10]. As a result, homotopy achieves fast
linear convergence for SaSD where sublinear convergence
is expected otherwise (Figure 8).
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Algorithm 1 Inertial Alternating Descent Method (iADM)

Input: Initializations ap0q P Sp, x P Rm; observation y P Rm;
penalty λ ě 0; momentum parameter α P r0, 1q.

Output: papkq,xpkqq, a local minimizer of Ψλ.
Initialize ap1q “ ap0q, xp1q “ xp0q.
for k “ 1, 2, . . . until converged do

Update x with accelerated proximal gradient step:

wpkq Ð xpkq ` α ¨
`

xpkq ´ xpk´1q
˘

xpk`1q Ð softλtk
“

wpkq ´ tk ¨∇xψλ
`

apkq,wpkq
˘‰

,

where softλpvq
.
“ signpvqdmaxp|v ´ λ| ,0q denotes the soft-

thresholding operator.
Update a with accelerated Riemannian gradient step:

zpkq Ð PSp

´

apkq ` α
xapkq,apk´1qy

¨ Papk´1q

`

apkq
˘

¯

apk`1q Ð PSp

´

zpkq ´ τk ¨ grada ψλ
`

zpkq,xpk`1q
˘

¯

.

end for

Algorithm 2 SaS-BD with homotopy continuation
Input: Observation y P Rm, motif size p0; momentum
α P r0, 1q; initial λp1q final λ‹, penalty decrease η P p0, 1q;
precision factor δ P p0, 1q.

Output: Solution path
 

pâpnq, x̂pnq;λpnqq
(

for SaS-BD.
Set number of iterations N Ð

X

logpλ‹{λp1qq { log η
\

.
Initialize âp0q P R3p0´2 using (II.2), x̂p0q “ 0 P Rm.
for n “ 1, . . . , N do

Minimize Ψλpnq to precision δλpnq with Algorithm 1:
`

âpnq, x̂pnq
˘

Ð iADM
`

âpn´1q, x̂pn´1q;y, λpnq, α
˘

.

Update λpn`1q Ð ηλpnq.
end for

C. Reweighted sparse penalization

When a0 is shift-coherent, minimization of the objective
Ψλ with respect to x becomes sensitive to perturbations,
creating “smudging” effects on the recovered map x. These
resolution issues can be remedied with stronger concave
regularizers. One can effecively minimize a logpx ` εq
penalty, for example, by increasingly shrinking smaller
entries of x with a simple reweighting scheme [CWB08].
Figure 6, as well as calcium imaging experiments in
Section IV-B and figs. 9 and 10, demonstrates improved
estimation quality as a result of this method.

IV. Experiments

A. Synthetic experiments on coherent motifs

We begin by simulations for which SaSD is solved by
minimizing the bilinear-lasso (BL). We experiment with
coherent kernels by discretizing the Gaussian window,
gp,σ

.
“ PSp

`“

exp
`

´
p2i´p´1q2

σ2pp´1q2

˘‰p

i“1

˘

, and setting the true
kernel to a0 “ gn0,2. For incoherent problem settings, we
sample a0 „ UnifpSn0q uniformly on the sphere.

1) Recovery performance: We test recovery probability for
varying kernel lengths n0 and sparsity rates θ. To ensure
the problem size is sufficiently large, we set m “ 100n0.

a) true map x0 c) noisy y, `1 only e) noisy y, reweighted

b) true motif a0 d) noisy a, `1 only f) noisy a, reweighted

Fig. 6: Recovery of x0 with `1-reweighting. (Left
column) Truth signals. (c) Solving minx Ψλpa,xq with
noisy data and coherent a0 leads to low-quality esti-
mates of x; (d) performance suffers further when a is
a noisy estimate of a0. (Right column) Reweighted `1
minimization alleviates this issue significantly.

a) incoherent a0 „ UnifpSn0 q b) coherent a0 “ gn0,2

Fig. 7: Recovery performance for bilinear-lasso. For
x0 „i.i.d. BRpθq, success probability of SaS-BD by solving
(BL), shown by increasing brightness, is large when
the sparsity rate θ is sufficiently small compared to
the length of a0, and vice versa. Success with a fixed
sparsity rate is more likely when a0 is incoherent.

a) incoherent a0 „ UnifpSn0
q b) coherent a0 “ gn0,2

Fig. 8: Algorithmic convergence for bilinear-lasso.
Convergence of function value Ψλ for iADM with αk “
pk ´ 1q{pk ` 1q vs. αk “ 0 (ADM); with and without
homotopy. The final penalty is set to λ “ 0.3{

?
n0θ.

Homotopy significantly improves convergences rate.
When a0 is coherent (b), convergence can be improved
in the tail with momentum, but is slower overall
compared to the incoherent case (a).

For each n0 and θ, we randomly generate10 x „i.i.d. BRpθq
for both coherent and incoherent a0. We solve ten trials of
(BL) on clean observation data a0 f x0 using iADM with
λ “ 10´2

?
n0λ

. The probability of recovering a signed shift of
a0 is shown in Figure 7. Recovery is likely when sparsity

10Here BR denotes the Bernoulli-Rademacher distribution,
which takes on values ˘1 w.p. θ{2 and zero w.p. 1´ θ.
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is low compared to the kernel length. The smaller success
region for the coherent problem setting shows its relative
difficulty compared to the incoherent setting.

2) Reweighting and homotopy: We demonstrate the effects
of momentum acceleration and homotopy on convergence
of the objective Ψλ. We deconvolve clean observations with
n0 “ 102, m “ 104, and θ “ n

´3{4
0 for both coherent and

incoherent a0. Algorithm 1 with data initialization is used
to solve (BL) with λ “ 0.3?

n0λ
, with and without momentum

(α “ 0) and homotopy. For iADM with momentum, we use
an iteration dependent αk “ k´1

k`2
[PS16]. With homotopy,

we apply Algorithm 2 with the initial estimate λp1q “
max`|xs`rap0qs,yy| [XZ13], λ‹ “ 0.3?

n0λ
, and η “ 0.8, as

well as the precision factor δ “ 0.1. The final solve of (BL),
regardless of method, uses a precision of ε‹ “ 10´6. The
results show the effectiveness of momentum and homotopy
on coherent problem settings, see Figure 8.

B. Calcium imaging applications
Based on Section II, solving the bilinear-lasso (BL) on

the sphere provides a strong general starting point for
SaS applications. Here, we show experimental results
for data from calcium fluorescence imaging, a popular
modality of observing the spiking activity of large neuronal
populations in vivo [GK12]. Strong performance has also
been demonstrated for microscopy and image deblurring,
see [ZLK`17], [CSL`18].
1) Sparse deconvolution of calcium signals.: Neural spike

trains are temporal signals created by action potentials,
each of which induce a transient response on the amount
of calcium present in the surrounding environment. By
viewing the transient and spike train as a0 and x0 respec-
tively, calcium signals can be mathematically modeled as
the SaS signal created by a0 f x0. Although neither a0 or
x0 are usually known in advance, deconvolution methods
for recovering x0 have been proposed [FZP17] in the past
by roughly modeling the transient hptq as the AR2 process
hτ1,τ2ptq » expp´t{τ1q ´ expp´t{τ2q for t ě 0.
As kernels created by sampling hptq are shift-coherent,

this is a challenging problem setting for SaSD. We show
deconvolution results using iADM, with and without
reweighting, for two cases: In Figure 9, calcium signals
are simulated with x0 „i.i.d. Bernoullipn´4{5

0 q P R104 , and
kernel a0 P S100 by sampling the transient h0.2,0.03ptq
for t P r0, 1ss. We observe y “ a0 f x0 ` n, with noise
n „i.i.d. N p0, 5 ¨10´2

q. Figure 10 demonstrates results using
physical data11. Although decent performance is provided
by iADM alone, reweighting significantly suppresses noise
and improves estimation quality for both data settings.
2) Neuronal localization of calcium images.: The bilinear

lasso easily be extended to handle multiple SaS signals. In
calcium imaging, this can potentially be used to track the
neurons in video sequences for calcium imaging, a chal-
lenging task due to (non)rigid motion, overlapping sources,
and irregular background noise [PSG`16], [GFG`19].
We consider frames from calcium microscopy video

obtained via the two-photon calcium microscopy dataset

11Obtained at http://spikefinder.codeneuro.org.

Fig. 9: Transient recovery from simulated calcium
signals. (Green) Transient recovered using Algorithm 2
without reweighting. (Blue) Reweighting significantly
improves estimation quality.

a) observed calcium signal vs. reconstruction

b) iADM spike train estimate

c) reweighted spike train estimate

Fig. 10: Estimation of spike train from AR2 calcium
signal. (a) Estimates of real data using Algorithm 2,
with and without reweighting. (b) Spike train estimate
with iADM alone, and (c) improved estimate and noise
reduction with reweighting.

from the Allen Institute for Brain Science12, shown in
Figure 11. Each frame contains the cross section of several
neurons and dendrites, which have distinct sizes. Each
frame can thus be viewed as the sum of two SaS signals
composed via 2D convolution, i.e. Y “ A1fX1`A2fX2,
with each comprised by neurons or dendrites exclusively.

By extending SaSD, we can apply Algorithm 2 to solve
the problem of recovering each of the kernels Ak and
occurrence maps Xk. Solving this convolutional dictionary
learning (SaS-CDL) problem allows us to better extract
neuronal signals by, for example, removing the dendritic
component from this image. Alternatively, we can apply
this method to estimate the locations of neuron firings
in video. As a result, the application of SaS-CDL as a
denoising or analysis tool for calcium imaging videos
provides a very promising direction future research.

V. Summary
Due to their ability to model time-invariant siginals, SaS

problems are ubiquitous across science and engineering.
However, the same property implies such problems are

12Obtained at http://observatory.brain-map.org/visualcoding/.
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a) calcium image Y

c) estimated kernel
Ak pk “ 1, 2q

b) reconstruction
Ak f Xk pk “ 1, 2q

d) predicted activation map
Xk pk “ 1, 2q

Fig. 11: Localization and classification for calcium
images. (a) Original calcium image; (b) reconstructed
images with the neuron (left) and dendrite (right)
kernels specifically; (c) respective kernel estimates; (d)
respective occurence map estimates.

naturally formulated as nonconvex optimization prob-
lems. Although developing theory and intuition for such
problems may seem intimidating at first glance, many
nonconvex inverse problems – such as SaSD and SaS-
CDL – are strongly regulated by their problem symmetries.
Understanding this regularity and how they deviate in
practical and non-ideal scenarios can provide a strong
basis for developing algorithms involving SaS problems
and other nonconvex inverse problems in practice.
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