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Short-and-Sparse Signals

DEFECTS IN CRYSTAL LATTICE FROM STM SIGNAL

Defect signature effects material properties

(superconductivity, semiconductivity, etc..)

DopedGraphine

REPEATING DEFECTS
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Short-and-Sparse Signals

TEMPORAL PATTERN IN SPIKE SORTING & CALCIUM IMAGING

Neurons transmit information via firing pattern

EVENT PATTERN IN LIGO

Black hole merger has characteristic gravitational wave
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Short-and-Sparse Signals

IMAGE DEBLURRING

- Small blurring kernel

- Sparse image gradient
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Short-and-Sparse Deconvolution (SaSD)Model

ANALYSIS SETTING:

GIVEN OBSERVATION y = a0 ∗ x0 ∈ Rn, p≪ n

DECONVOLVE SHORT a0 ∈ Rp AND SPARSE x0 ∈ Rn SIGNALS

−1 1 1 −2 0

︸ ︷︷ ︸
n

︸ ︷︷ ︸
n

︸ ︷︷ ︸
p

= ∗

y = a0 x0∗

In analysis the convolution ∗ is circular†
†In practice it can be either circular or direct
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Symmetric Solutions in SaSD

ALL SHIFTED & SCALED (a0, x0) ARE SOLUTIONS

−1 1

1 −2 0

−1 0 2

=

∗

∗

y =
α sℓ[a0] (1/α) s−ℓ[x0]

∗

si[a0] ∈ R3p is shift of a0 by ℓ indices†:

sℓ[a0] = [ 0, . . . , 0︸ ︷︷ ︸
p+ℓ

, a0 , 0, . . . , 0︸ ︷︷ ︸
p−ℓ

]

† In analysis sℓ[x0] is circular shift of x0 by ℓ
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Symmetric Solutions in SaSD

ALL SHIFTED & SCALED (a0, x0) ARE SOLUTIONS

−1 1

1 −2 0

−1 0 2

=

∗

∗

y =
α sℓ[a0] (1/α) s−ℓ[x0]

∗

Wehavemany possible solutions ... but it is ok!

Find (â, x̂) as SaSD solution where:

- Fix scale ∥â∥2 = 1

- Accept every signed shift â = ±sℓ[a0] as solution
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Algorithm: Bilinear Lasso

NATURAL, EFFECTIVE ALGORITHM—BILINEAR LASSO

min
a∈S3p−1, x∈Rn

λ ∥x∥1︸ ︷︷ ︸
sparsity surrogate

+ 1
2 ∥a ∗ x − y∥2F︸ ︷︷ ︸

data fidelity

FIND ONE OF THE MINIMIZERS (â, x̂) SOLVES SASD

Caveats:

1. Fix scale =⇒ optimize a over sphere where ∥a∥2 = 1

2. Accept shifts =⇒ optimize a at higher dimension spaceR3p†

† This space contains all shifts:
{

s−p[a0] , . . . , sp[a0]
}
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Analysis of Algorithm: Approximate Bilinear Lasso

APPROXIMATION...

min
a∈S3p−1, x∈Rn

λρ(x) + 1
2 ∥a ∗ x − y∥2F

= min
a∈S3p−1

(
min
x∈Rn

λρ(x) + 1
2 ∥a ∗ x − y∥2F

)
= min

a∈S3p−1

(
min
x∈Rn

λρ(x) + 1
2 ∥a ∗ x∥2F + 1

2 ∥y∥
2
F − ⟨a ∗ x,y⟩

)
≈ min

a∈S3p−1

(
min
x∈Rn

λρ(x) + 1
2 ∥a∥

2
F + 1

2 ∥x∥
2
F︸ ︷︷ ︸

Accurate if a ≈ δ
or x highly sparse

+ 1
2 ∥y∥

2
F − ⟨a ∗ x,y⟩

)

= min
a∈S3p−1

(
min
x∈Rn

λρ(x)− ⟨a ∗ x,y⟩+ 1
2 ∥x∥

2
F︸ ︷︷ ︸

φABL(a)

)
+ contant

φABL : Approximate Bilinear Lasso objective

ρ : Smooth sparsity surrogate
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Analysis of Algorithm: Approximate Bilinear Lasso

THEORY: STUDY APPROXIMATE BILINEAR LASSO

min
a∈S3p−1

(
min
x∈Rn

λρ(x) + 1
2 ∥x∥

2
2 + ⟨a ∗ x,y⟩

)

=: min
a

φABL(a) s.t. a ∈ S3p−1

Caveats:

- Performance is worse then Bilinear Lasso.....

- φABL(a) is min. of convex function of x that is easier to study

Toward analysis:

- Study the geometry landscape ofφABL over sphere
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Geometry of Approximate Bilinear Lasso-1

LANDSCAPE OF φABL NEAR SHIFTS SUBSPACE OVER SPHERE

Shifts subspace: S{ℓ1,...,ℓτ} = span {sℓ1 [a0], · · · , sℓτ [a0]}

Near sℓ1 [a0]

sℓ1 [a0]

NearS{ℓ1,ℓ2}

sℓ1 [a0]
sℓ2 [a0]

S{ℓ1,ℓ2,ℓ3}

sℓ1 [a0] sℓ2 [a0]

sℓ3 [a0]

φABL(a)

Sp−1

Left: φABL(a) near one shift over sphere

- Strongly convex

- Local minimizer is near si[a0] (a good solution!)
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Geometry of Approximate Bilinear Lasso-2

LANDSCAPE OF φABL NEAR SHIFTS SUBSPACE OVER SPHERE

Shifts subspace: S{ℓ1,...,ℓτ} = span {sℓ1 [a0], · · · , sℓτ [a0]}

Near sℓ1 [a0]

sℓ1 [a0]

NearS{ℓ1,ℓ2}

sℓ1 [a0]
sℓ2 [a0]

S{ℓ1,ℓ2,ℓ3}

sℓ1 [a0] sℓ2 [a0]

sℓ3 [a0]

φABL(a)

Sp−1

Mid: φABL(a) near two shifts over sphere

- Negative curvature in between shifts breaks the symmetry

- Positive curvature away from shifts subspace
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Geometry of Approximate Bilinear Lasso-3

LANDSCAPE OF φABL NEAR SHIFTS SUBSPACE OVER SPHERE

Shifts subspace: S{ℓ1,...,ℓτ} = span {sℓ1 [a0], · · · , sℓτ [a0]}

Near sℓ1 [a0]

sℓ1 [a0]

NearS{ℓ1,ℓ2}

sℓ1 [a0]
sℓ2 [a0]

S{ℓ1,ℓ2,ℓ3}

sℓ1 [a0] sℓ2 [a0]

sℓ3 [a0]

φABL(a)

Sp−1

Right: φABL(a) over three shifts and sphere

- Convex-concave-convex geometry in higher dimension

- Every pair of shifts has similar geometry as (Mid)
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Geometry of Approximate Bilinear Lasso-4

LANDSCAPE OF φABL NEAR SHIFTS SUBSPACE OVER SPHERE

Shifts subspace: S{ℓ1,...,ℓτ} = span {sℓ1 [a0], · · · , sℓτ [a0]}

Near sℓ1 [a0]

sℓ1 [a0]

NearS{ℓ1,ℓ2}

sℓ1 [a0]
sℓ2 [a0]

S{ℓ1,ℓ2,ℓ3}

sℓ1 [a0] sℓ2 [a0]

sℓ3 [a0]

φABL(a)

Sp−1

CONCLUDE:
- LOCAL MINIMIZERS ARE NEAR SHIFTS

- NEGATIVE CURVATURE BREAKS SYMMETRY BTWN SHIFTS
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Geometry of Approximate Bilinear Lasso-5

GEOMETRY OF φABL IS IDEAL FOR OPTIMIZATION

IN UNION OF SUBSPACES OF HIGH DIMENSION

...but not global

Sℓ1,ℓ2

Sℓ1,ℓ3

Sℓ2,ℓ3

Σ4p0θ φABL(a)
Sℓ1,ℓ3

Sℓ2,ℓ3

Σ4p0θ : UoS spanned by 4p0θ shifts of all combination
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When doesφABL has good geometry?-1

SHIFT–COHERENCE µ OF a0:

µ = maxi ̸=j
∣∣⟨si[a0] , sj[a0]

⟩∣∣
SPARSITY θ OF x0:

x0 ∼ Bernoulli–Gaussian(θ)

µ ↓ µ ↑

θ ↓ θ ↑

SASD IS HARDER IF...
- COHERENCE µ ↑ --- Solutions closer on sphere

- SPARSITY θ ↑ ------- More unknowns

- a0 LENGTH p ↑ ----- More unknowns

- y LENGTH n ↓ ------- Fewer observations
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When doesφABL has good geometry?-2

SPARSITY–COHERENCE TRADEOFF:

Spiky Generic Tapered generic lowpass

µ ≈ 0 µ ≈ p−1/2
0 µ ≈ const.

θ ≈ p−1/2
0 θ ≈ p−3/4

0 θ ≈ p−1
0

a0

x0

shift-
coherence

allowable
sparsity

If µ of a0 increases from 0↗ 1, than θ of x0 decreases from
1√p0 ↘

1
p0

18
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Algorithm---Initialization

START a(0) NEAR SHIFTS SUBSPACE WITH CHUNK OF SIGNAL y

...signal y chunk is sum of few (truncated) shifts

y a0 x0

windowed y: a(−1) initialize: a(0)

= ∗

≈

αisi[a0] +αjsj[a0]

y consists

of shifts

a(0) near
S{i,j}

- In analysis: a(0) = −PS3p−1∇φABLPS3p−1( [0p,y1, · · · yp,0
p] )

- In practice: a(0) is normalized [0p,y1, · · · yp,0
p]

19
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Algorithm---RetractiveMinimization

SMALL STEP DESCENT METHOD STAYS NEAR SUBSPACE

...positive curvature ofφABL away from subspace

SET SPARSITY PENALTY λ ⪅ c
/√

pθ WHEN x0 ∼ c · N (0, 1)

...because λ acts like "soft-threshold of shifts"

In analysis: curvilinear a+ ← PS3p−1 [a− tg − t2v]†

In practice: alternating gradient‡

† PS3p−1 : Riemannian retraction; g: Riemannian gradient; v: Riemannian curvature
‡For bilinear Lasso set x(0) as minimizer given a(0); small step gradients avoid saddles

20



Algorithm---RetractiveMinimization

SMALL STEP DESCENT METHOD STAYS NEAR SUBSPACE

...positive curvature ofφABL away from subspace

SET SPARSITY PENALTY λ ⪅ c
/√

pθ WHEN x0 ∼ c · N (0, 1)

...because λ acts like "soft-threshold of shifts"

In analysis: curvilinear a+ ← PS3p−1 [a− tg − t2v]†

In practice: alternating gradient‡

† PS3p−1 : Riemannian retraction; g: Riemannian gradient; v: Riemannian curvature
‡For bilinear Lasso set x(0) as minimizer given a(0); small step gradients avoid saddles

20



Algorithm---RetractiveMinimization

SMALL STEP DESCENT METHOD STAYS NEAR SUBSPACE

...positive curvature ofφABL away from subspace

SET SPARSITY PENALTY λ ⪅ c
/√

pθ WHEN x0 ∼ c · N (0, 1)

...because λ acts like "soft-threshold of shifts"

In analysis: curvilinear a+ ← PS3p−1 [a− tg − t2v]†

In practice: alternating gradient‡

† PS3p−1 : Riemannian retraction; g: Riemannian gradient; v: Riemannian curvature
‡For bilinear Lasso set x(0) as minimizer given a(0); small step gradients avoid saddles

20



Theory---Geometry & Algorithm

THM1: GEOMETRY OF φABL OVER SUBSPACES

Given a0 ∈ Rp0, µ-shift coherent; x0 ∼ BG(θ) long and

1

p0

⪅ θ ⪅ 1

p0
√
µ+
√p0

,

then local minima of φABL over UoS are close to shifts.

THM2: PROVABLE ALGORITHM FOR SASD

A minimizing algorithm starts and stays near a subspace,

solves SaSD exactly up to a signed shift in poly time.
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Analysis---Shift Space

WRITE α AS COEFFICIENT OF SHIFTS SUPERPOSITION

FOR a NEAR Sτ , τ ⊂ {−p, . . . , p}

a =
∑

ℓ∈τ αℓsℓ[a0] +
∑

ℓ∈τ c αℓsℓ[a0] = Ca0α
†

Characterizes distance of a to subspace:

d(a,Sτ ) = inf
{
∥ατ c∥2 :

∑
ℓ αℓsℓ[a0] = a

}

WRITE β AS COHERENCE WITH SHIFTS FOR a NEAR Sτ

βℓ = ⟨a, sℓ[a0]⟩ , β = C∗
a0

a

Characterizes (geodesic) distance of a to each shifts:

ds(a, sℓ[a0]) = cos |⟨a, sℓ[a0]⟩|

†Ca0 ∈ Rn×n is circular convolution of zero padded a0

22



Analysis---Shift Space
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Analysis---Gradient &Hessian in Shift Space

SIMPLIFY OBJECTIVE (with ρ = ℓ1)

φABL(a)

=c minx λ ∥x∥1 +
1
2

∥∥x − y∧∗ a
∥∥2

F

=c λ
∥∥softλ[y

∧∗ a]
∥∥
1
+ 1

2

∥∥softλ[y
∧∗ a

∥∥2
F −

⟨
softλ[y

∧∗ a],y∧∗ a
⟩

=c λ
∥∥softλ[y

∧∗ a]
∥∥
1
+ 1

2

∥∥softλ[y

∧∗ a
∥∥2

F −
⟨
softλ[y

∧∗ a], softλ[y

∧∗ a]+λσ
⟩

=c −1
2

∥∥softλ[y

∧∗ a]
∥∥2

F
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Analysis---Gradient in Shift Space

∇φABL(a) = −ι∗y ∗ softλ[y

∧∗ a] = −ι∗a0 ∗ x0 ∗ softλ[x

∧

0︸ ︷︷ ︸
concentrate toχ

∗a∧

0 ∗ a︸ ︷︷ ︸
β

]

= −ι∗a0 ∗ χ[β] = −
∑

ℓ χ[β]ℓ︸ ︷︷ ︸
≈ soft[β]ℓ

sℓ[a0]

0 λ

0

χ[β]ℓ

0
λ

β(a)

β(a+)

Large gradient region

βℓ

gradient in shift space
gradient descent

suppresses smallβi

Riemannian gradient: Pa⊥∇φABL(a):
- Gradient iterates is soft-thresholding power method on shifts

- Gradient vanishes at solution or in between shifts
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Analysis---Hessian in Shift Space

v∗∇̃2φ(a)v =−v∗a0 ∗ x0 ∗ PI [x

∧

0︸ ︷︷ ︸
≈ c·1{|·|>λ}

∗a∧

0 ∗ v] (I=supp(softλ[y∧∗ a]))

≈c −
⟨
(a∧

0 ∗ v)◦2,1{|ǎ0∗v|>λ}
⟩
= −

∑
ℓ β

2
ℓ(v)1{|βℓ(v)|>λ}︸ ︷︷ ︸
logic function ofβℓ

0 λ
0

1

−βℓ(v)

S⊥
τ

Sτ

Negative curvature region
Strong convexity region Hessian≈ 1{|βℓ|>λ}

SC: sphere
curvature

positive curvature awaySτ

negative curvature inSτ

Riemannian Hessian: Pa⊥
(
∇̃2φ(a)︸ ︷︷ ︸
φ curv. neg.

+ ⟨−∇φ(a),a⟩︸ ︷︷ ︸
sphere curv. pos.

)
Pa⊥ :

- |βℓ| ↑: Direction within subspace has negative curvature
- |βℓ| ↓: Direction away subspace has positive curvature
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Analysis---Geometry Overview

FOUR SUBREGIONS:

γ
2

γ
2

γ

γ

S{i,j}(|βi|, |βj|)

S⊥{i,j}(‖ατ c‖2)

0
si[a0] sj[a0]

4
5 ≤

|βi|
|βj | ≤

5
4

︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸
|βj| < νλ |βi| < νλ

︷ ︸︸ ︷ ︷ ︸︸ ︷νλ < |βj| < 4
5 |βi| νλ < |βi| < 4

5 |βj|

Negative

Curvature

Large

Gradient

Large

Gradient

Strong

Convex

Strong

Convex

Retractive Gradient

Retractive Gradient

ατ c : distance to subspace

βi,βj: distance to the shifts
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Related Algorithmic Theory to SaSD-1

WORKS DIRECTLY RELEVANT TO SASD

[Zhang, Kuo, Wright ’18]: SaSD via dictionary learning, ℓ4 over sphere
- Better sparsty (a0 Gaussian, θ ≤ p−2/3, ours θ ≤ p−3/4)

- Only recover "truncated shifts", has addition condition requirements

[Zhang, Lau, Kuo, Wright ’17]: SaSD with φABL, highly sparse case
- Study only the dilute limit (n→∞) and highly sparse (θ ≤ 1/p) case

[Choudhary, Mitra ’15] SaSD is unidentifiable
- If x0 has special support pattern, SaSD is unsolvable
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Related Algorithmic Theory to SaSD-2

WORKS SOMEWHAT RELEVANT TO SASD

[Ahmed, Recht, Romberg, ’14] a0, x0 random subspace, SDP
[Chi ’16] a0 random subspace, x0 sparse, atomic norm SDP
[Lee, Li, Junge, Bresler ’16] random basis of sparsity, alt. min.
[Li, Ling, Strohmer, Wei, ’16] random subspaces, nonconvex opt.
[Kech, Krahmer ’17] random basis/subspace, optimal injectivity
...
- Random basis has no shift-symmetry, solvable with convexmethod

- Can be applied in communication, not SaSD cases

[Wang, Chi ’16] Multi-instance BD, dictionary learning
[Li, Bresler ’18] Multi-instance BD, global geometry
- Multiple y1, . . .ym, can be reduced from SaSD, not vise versa.

- Has good global geometry, more like dictionary learning
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Performance of Bilinear Lasso-1

FOURIER TRANSFORM METHOD IN STM DATA
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Performance of Bilinear Lasso-2

RECOVERY WITH BILINEAR LASSO

30



Performance of Bilinear Lasso-3

IMAGE DEBLURRING—RECOVER SHARP IMAGE

- a0 is blur kernel (d); x0 is sparse gradient (e,f)

- (a,d-f): original image, kernel, gradient x/y
- (c,g-i): recovered image, kernel, gradient x/y
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Performance of Bilinear Lasso-4

COMMON METHOD IN DEBLURRING OPTIMIZE ON SIMPLEX

min
a,x

λ ∥x∥1 +
1
2 ∥y − a ∗ x∥2F , s.t. ∥a∥1 = 1, a ≥ 0

- It is a reasonable physically

- But has bad local minimizers at a = δ

- Optimize over sphere has good geometry
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Performance of Bilinear Lasso-5

COMPARISON WITH SOME OTHER METHODS

- Achieve relative good performance via simple method
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Wrapping Up

Main theoretical results: geometry of objective landscape,
and a provable algorithm for SaSD.

Optimizing φABL is not recommended in practice.

Algorithmic ideas (sphere, initialization, etc.) are useful for
practical method such as bilinear Lasso.
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THANK YOU!

...AND

3

THE UNIVERSITY IDENTITY

The design of the Columbia identity 
incorporates the core elements of well- 
thought-out branding: name, font, 
color, and visual mark. The logo was  
designed using the official University 
font, Trajan Pro, and features specific 
proportions of type height in relation 
to the visual mark. The official Colum-
bia color is Columbia Blue, or Pantone 
290. On a light color background, the 
logo can also be rendered in black, grey 
(60% black), Pantone 280, or Pantone 
286; on a darker color background, the 
logo can be rendered in Pantone 290, 
291, or 284, depending on which color 
works best with the overall design of 
your product, the media in which it will 
be reproduced, and its intended use.
 

Black

Pantone 286

4-color Process
100% Cyan
72% Magenta
 

White or Pantone 290 
(Columbia Blue)
Background: 
Pantone 286

For photographs,  
use the logo in 
white against a 
darker area, posi-
tioning it either at 
top left/right or  
bottom left/right.


