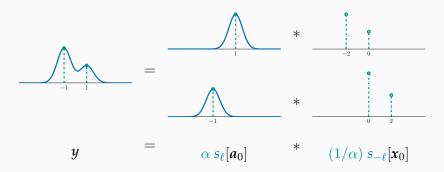

Geometry & Symmetry in Short-and-Sparse Deconvolution

Han-Wen (Henry) Kuo Yuqian Zhang Yenson Lau and John Wright

June, 13, 2019

Short-and-Sparse (SaS) Deconvolution


SIGNALS CONTAINING **SHORT REPEATED** MOTIFS:

SASD: FIND SHORT a_0 & SPASE x_0 FROM CONVOLUTION $y = a_0 * x_0$

Symmetric Solutions in SaSD

All <u>scaled</u> & <u>shifts</u> of (a_0, x_0) are solutions

To solve a_0 ...

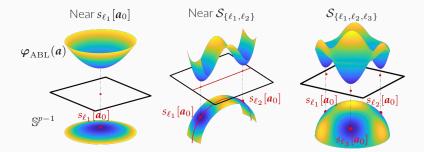
- Fix scale $\|\widehat{a}\|_2 = 1$
- Accept every signed shift $\widehat{a} = \pm s_\ell[a_0]$ as solution

Algorithm: Approximate Bilinear Lasso

NATURAL, EFFECTIVE ALGORITHM: BILINEAR LASSO

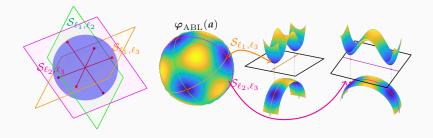
$$\min_{\boldsymbol{a}\in\mathbb{S}^{p-1},\,\boldsymbol{x}\in\mathbb{R}^n}\lambda\,\|\boldsymbol{x}\|_1+\frac{1}{2}\,\|\boldsymbol{a}\ast\boldsymbol{x}-\boldsymbol{y}\|_2^2$$

THEORY: STUDY APPROXIMATE BILINEAR LASSO

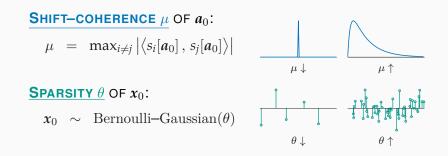

$$\min_{\boldsymbol{a} \in \mathbb{S}^{p-1}} \left(\min_{\boldsymbol{x} \in \mathbb{R}^n} \lambda \boldsymbol{\rho}(\boldsymbol{x}) + \frac{1}{2} \|\boldsymbol{x}\|_2^2 + \langle \boldsymbol{a} \ast \boldsymbol{x}, \boldsymbol{y} \rangle \right)$$
$$=: \boxed{ \min_{\boldsymbol{a}} \varphi_{\text{ABL}}(\boldsymbol{a}) \quad s.t. \quad \boldsymbol{a} \in \mathbb{S}^{p-1} }$$

here, $\pmb{\rho}$ is smoothed ℓ^1 function \mathbb{S}^{p-1} is p-dimensional sphere

Geometry of Approximate Bilinear Lasso


OVER SUBSPACE $\mathcal{S}_{\{\ell_1,\ldots,\ell_3\}}$ spanned by shifts:

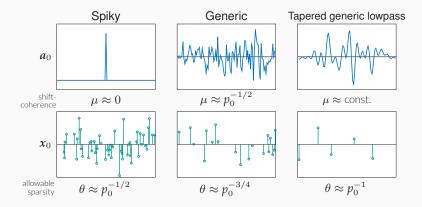
- LOCAL MINIMIZERS ARE NEAR SHIFTS
- **NEGATIVE CURVATURE** BREAKS SYMMETRY BETWEEN SHIFTS



Geometry of Approximate Bilinear Lasso

GEOMETRY OF $arphi_{ m ABL}$ is <u>benign</u> over <u>union of subspaces</u>

When is SaSD Easy?



SASD IS HARDER IF...

- **COHERENCE** μ \uparrow (solutions closer on sphere)
- **SPARSITY** $\theta \uparrow$ (more unknowns)

When is SaSD Easy?

SPARSITY-COHERENCE TRADEOFF:

If μ of \mathbf{a}_0 increases from $0 \nearrow 1$, then θ of \mathbf{x}_0 decreases from $\frac{1}{\sqrt{p_0}} \searrow \frac{1}{p_0}$

Theory: Geometry & Algorithm

Thm1: Geometry of $arphi_{ m ABL}$ over subspaces

Given $a_0 \in \mathbb{R}^{p_0}$, μ -shift coherent; $x_0 \sim BG(\theta)$ long and

$$rac{1}{p_0} \hspace{0.1in} \lessapprox \hspace{0.1in} heta \hspace{0.1in} \lessapprox \hspace{0.1in} rac{1}{p_0\sqrt{\mu}+\sqrt{p_0}}$$

then local minima of $\varphi_{\rm ABL}$ over UoS are close to shifts.

THM2: PROVABLE ALGORITHM FOR SASD

A minimizing algorithm starts and stays near a subspace, solves SaSD exactly up to a signed shift in poly time.

Wrapping Up

Main theoretical results: **geometry of objective landscape**, and a **provable algorithm** for SaSD.

Optimizing $\varphi_{\rm ABL}$ is <u>not</u> recommended in practice.

Algorithmic ideas (sphere, initialization, etc.) are **useful for practical method** such as <u>bilinear Lasso</u>.

THANK YOU!

Plz visit us @ PB#120