

Short-and-Sparse Model

• Model signals containing repeated (short) motifs:

Problem: SaS Deconvolution

Given the cyclic convolution $\boldsymbol{y} = \boldsymbol{a}_0 * \boldsymbol{x}_0 \in \mathbb{R}^n$ of $\boldsymbol{a}_0 \in \mathbb{R}^{p_0}$ short ($p_0 \ll n$), and $\boldsymbol{x}_0 \in \mathbb{R}^n$ sparse, recover \boldsymbol{a}_0 and \boldsymbol{x}_0 , up to a scaled shift.

Symmetric Solutions in SaSD

• All scaled & shifts of $(\boldsymbol{a}_0, \boldsymbol{x}_0)$ are solutions to SaSD

- We fix the scale $\|\bar{\boldsymbol{a}}\|_2 = 1$. - Signed shifts $\pm \{s_{\ell}[a_0] : \ell = -p_0 + 1, \dots, p_0 - 1\}$ are solutions.

Algorithm: Approximate Bilinear Lasso

• Natural, effective method to SaSD: *bilinear Lasso* [1].

$$\min_{oldsymbol{a}\in\mathbb{S}^{p-1}, \ oldsymbol{x}\in\mathbb{R}^n} \lambda \left\|oldsymbol{x}
ight\|_1 + rac{1}{2} \left\|oldsymbol{a} *oldsymbol{x} - oldsymbol{y}
ight\|_2^2.$$

(1)

• To understand (1), we study a simplification: *"approximate bilinear Lasso"*:

$$\min_{\boldsymbol{a}\in\mathbb{S}^{p-1}}\left(\min_{\boldsymbol{x}\in\mathbb{R}^n}\lambda\boldsymbol{\rho}(\boldsymbol{x})+\frac{1}{2}\|\boldsymbol{x}\|_2^2+\langle\boldsymbol{a}*\boldsymbol{x},\boldsymbol{y}\rangle\right)$$
$$=:\min_{\boldsymbol{a}} \boldsymbol{\varphi}_{\text{ABL}}(\boldsymbol{a}) \quad s.t. \quad \boldsymbol{a}\in\mathbb{S}^{p-1}$$
(2)

- ρ smoothed approximates ℓ^1 -sparsity surrogate.

- $-\frac{1}{2} \|\boldsymbol{x}\|_2^2 + \langle \boldsymbol{a} * \boldsymbol{x}, \boldsymbol{y} \rangle$ approximates least square.
- Marginal minimize \boldsymbol{a} over sphere.

- Domain dimension $p \approx 3p_0$ contains support of all shifts.

Geometry and Symmetry in Short-and-Sparse Deconvolution Han-Wen (Henry) Kuo, Yuqian Zhang, Yenson Lau and John Wright

Columbia University

Geometry of Objective Landscape

The geometry of φ_{ABL} over the sphere \mathbb{S}^{p-1} is determined by the shifts of a_0 (the solutions of SaSD). φ_{ABL} is convex near every signed shift, and exhibits negative curvature at points that are superpositions of a few shifts. This regional geometry holds for every combination of shifts, whenever x_0/a_0 satisfy sparsity/coherence conditions.

Sparsity-Coherence Tradeoff

• Shift-coherence μ of \boldsymbol{a}_0 :

 $\mu(\boldsymbol{a}_0) = \max_{i \neq j} |\langle s_i[\boldsymbol{a}_0], s_j[\boldsymbol{a}_0] \rangle|$ (3)

- Sparsity rate θ of \boldsymbol{x}_0 : $\boldsymbol{x}_0 \sim_{\text{i.i.d.}} \text{BG}(\theta)$.
- SaSD is harder if \boldsymbol{a}_0 is more shift-coherent (solutions are closer on sphere) or \boldsymbol{x}_0 is denser (more unknowns).

decreases from $1/\sqrt{p_0}$ to $1/p_0$

Theorem 1: Geometry of φ_{ABL} over Union of Subspaces

Let $\boldsymbol{y} = \boldsymbol{a}_0 * \boldsymbol{x}_0$ with $\boldsymbol{a}_0 \in \mathbb{S}^{p_0-1}$ μ -shift coherent and $\boldsymbol{x}_0 \sim_{\text{i.i.d.}} BG(\theta) \in \mathbb{R}^n$ with sparsity rate $\theta \in \left[\frac{c_1}{p_0}, \frac{c_2}{p_0\sqrt{\mu} + \sqrt{p_0}}\right] \cdot \frac{1}{\log^2 p_0}.$

Set $\rho(x) = \sqrt{x^2 + \delta^2}$ and $\lambda = 0.1/\sqrt{p_0\theta}$ in φ_{ABL} . There exists $c, \delta > 0$ such that if $n \ge poly(p_0)$, with high probability, every local minimizer $\bar{\boldsymbol{a}}$ of $\boldsymbol{\varphi}_{\text{ABL}}$ over $\Sigma_{4\theta p_0}$ satisfies $\|\bar{\boldsymbol{a}} - \sigma s_{\ell}[\boldsymbol{a}_0]\|_2 \leq c \max{\{\mu, p_0^{-1}\}}$.

From Geometry to Provable Algorithm

Design a **provable** algorithm for **exact recovery** based on the geometry of φ_{ABL} . The algorithm initializes $a^{(0)}$ near one of the subspaces in $\Sigma_{4\theta p_0}$; then the geometry of φ_{ABL} ensures small stepping descent method stay near subspace and converges toward the local minimizer close to a shift.

Theorem 2: Provable Algorithm of SaSD

Suppose \boldsymbol{a}_0 is μ -truncated shift coherent and $\boldsymbol{x}_0 \sim_{\text{i.i.d.}} \text{BG}(\theta) \in \mathbb{R}^n$ with θ, μ satisfying (4) and $\mu \leq \frac{c_3}{\log^2 n}$. If lengths n, p_0 satisfy $n > poly(p_0)$ and $p_0 > polylog(n)$, then with high probability, our algorithm produces $(\widehat{\boldsymbol{a}}, \widehat{\boldsymbol{x}})$ satisfies $\|(\widehat{\boldsymbol{a}}, \widehat{\boldsymbol{x}}) - \sigma(s_{\ell}[\boldsymbol{a}_0], s_{-\ell}[\boldsymbol{x}_0])\|_2 \leq \varepsilon$ with running time $\mathcal{O}(\operatorname{poly}(n, p_0, \varepsilon^{-1})).$

Geometry over Subspace of Shifts

• φ_{ABL} has **local minimizer** near shifts and has **negative curvature** breaks symmetry in subspace $\mathcal{S}_{\{\ell_1,\cdots,\ell_3\}}$ spanned by shifts $\{s_{\ell_1}[\boldsymbol{a}_0],\cdots,s_{\ell_3}[\boldsymbol{a}_0]\}.$

subspace S_i

During minimization the summands of shifts in $a^{(0)}$ sparsifies until one shift left. Write $\boldsymbol{\beta}(\boldsymbol{a})$ as "shift space coefficients" of \boldsymbol{a} : • Gradient as soft-thresholding of shifts

[1] Y. Zhang, Y. Lau, H-W. Kuo, S.Cheung, A. Pasupathy and J. Wright, "On the global geometry of sphere-constrained sparse blind deconvolution", CVPR, 2017. [2] Y. Lau, Q. Qu, H-W. Kuo, Y. Zhang, P. Zhou and J. Wright, "Short-and-Sparse Deconvolution-A Geometric Approach". Submitted, 2019.

Provable Algorithm of SaSD

• Initialize: Use chunk of **y** (sum of truncated shifts)

• *Refinement*: (sketch) Alternating minimize bilinear Lasso converges to exact solution at a linear rate.

Analysis: Sparsifying in Shift Space

Discussion

• Our main contribution is in *theory* (optimize φ_{ABL} is not recommended in practice), but the ideas are useful for developing practical algorithms [2].

References

