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Abstract

Short-and-sparse deconvolution (SaSD) is the problem of extracting localized, re-1

curring motifs in signals with spatial or temporal structure. Variants of this problem2

arise in applications such as image deblurring, microscopy, neural spike sorting,3

and more. SaSD is challenging in both theory and practice, as natural optimization4

formulations are nonconvex. Moreover, practical deconvolution problems involve5

smooth motifs (kernels) whose spectra decay rapidly, resulting in poor conditioning6

and numerical challenges. This paper is motivated by recent theoretical advances7

[1, 2], which characterize the optimization landscape of a particular nonconvex for-8

mulation of SaSD. This is used to derive a provable algorithm which exactly solves9

certain non-practical instances of the SaSD problem. We leverage the key ideas10

from this theory (sphere constraints, data-driven initialization) to develop a prac-11

tical algorithm, which performs well on data arising from a range of application12

areas. We highlight key additional challenges posed by the ill-conditioning of real13

SaSD problems, and suggest heuristics (acceleration, continuation, reweighting) to14

mitigate them. Experiments demonstrate both the performance and generality of15

the proposed method.16

1 Introduction17

Many signals arising in science and engineering can be modeled as superpositions of basic, recurring18

motifs, which encode critical information about a physical process of interest. Signals of this type19

can be modeled as the convolution of a zero-padded short kernel a0 P Rp0 (the motif) with a longer20

sparse signal x0 P Rm (m " p0) which encodes the locations of the motifs in the sample1:21

y “ ιa0 f x0. (1)
We term this a short-and-sparse (SaS) model. In practice, often only y is directly observed. Short-22

and-sparse deconvolution (SaSD) is the problem of recovering both a0 and x0 from y. Variants of23

this problem arise in areas such as microscopy [3], astronomy [4], and neuroscience [5]. SaSD is a24

challenging inverse problem in both theory and practice. Natural formulations are nonconvex, and25

until recently very little algorithmic theory was available. Moreover, practical instances are typically26

ill-conditioned, due to the spectral decay of the kernel a0.27

This paper is motivated by recent theoretical advances in nonconvex optimization – and in particular,28

on the geometry of SaSD. [1, 2] study particular optimization formulations for SaSD and show that29

the landscape is largely driven by the problem symmetries of SaSD. They derive provable methods30

for idealized problem instances, which exactly recover pa0,x0q up to trivial ambiguities. While31

inspiring, these methods are not practical and perform poorly on real problem instances. Where the32

1For simplicity, (1) uses cyclic convolution; algorithms are results also apply to linear convolution with minor
modifications. Here ι denotes the zero padding operator.
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(a) Near one shift
(b) Two shifts (c) Multiple shifts

(d) ϕDQ (e) ϕBL

Figure 1: Geometry of ϕDQ near superpositions of shifts of a0 [2]. (a) Regions near single shifts are strongly
convex. (b) Regions between two shifts contain a saddle-point, with negative curvature pointing towards each
shift and positive curvature orthogonally. (c) The span of three shifts. When µspa0q « 0, marginalizations of
the (d) Dropped Quadratic and (e) Bilinear Lasso (ϕBL

.
“ minx ΨBLpa,xq) are similar empirically.

emphasis of [1, 2] is on theoretical guarantees, here we focus on practical computation. We show33

how to combine ideas from this theory with heuristics that better address the properties of practical34

deconvolution problems, to build a novel method that performs well on data arising in a range of35

application areas. A critical issue in moving from theory to practice is the poor conditioning of36

naturally-occurring deconvolution problems: we show how to address this with a combination of37

ideas from sparse optimization, such as momentum, continuation, and reweighting. The end result is38

a general purpose method, which we demonstrate on data from neural spike sorting, calcium imaging39

and fluorescence microscopy.40

Notation The zero-padding operator is denoted by ι : Rp Ñ Rm. Projection of a vector v P Rp41

onto the sphere is denoted by PSp´1pvq
.
“ v{ }v}2, and Pzpvq

.
“ v ´ xv, zy z denotes projection42

onto the tangent space of z P Sp´1. The Riemannian gradient of a function f : Sp´1 Ñ R on the43

sphere is given by grad f
.
“ PSp´1 ˝∇f .44

2 The role of symmetry in SaSD45

2.1 Symmetry and shift-coherence46

An important observation of the SaSD problem is that it admits multiple equivalent solutions. This is47

purely due to the cyclic convolution between a0 and x0, which exhibits the trivial ambiguity248

y “ ιa0 f x0 “ pαs` rιa0sq f
`

1
αs´` rx0s

˘

,

for any nonzero scalar α and cyclic shift s` r¨s. Since these scale and shift symmetries create several49

acceptable candidates for a0 and x0, they largely drive the behavior of certain nonconvex optimization50

problems formulated for SaSD. Another important aspect of SaSD is the shift-coherence of its kernel,51

µpa0q
.
“ max

` ­“0
|xιa0, s` rιa0sy| P r0, 1s . (2)

Geometrically, the shifts of a0 grow further apart on the sphere as µpa0q diminishes. SaSD problems52

are also “easier” when µpa0q is small, in the sense that they can be solved with denser x0 as53

overlapping shifts are easier to distinguish.54

2.2 Landscape geometry under shift-incoherence55

A natural approach to solving SaSD is to formulate it as a suitable optimization problem. For56

instance, consider the Bilinear Lasso (BL) problem, which minimizes the squared error between the57

observation y and its reconstruction af x, plus a `1-norm sparsity penalty on x,58

min
aPSp´1,xPRm

”

ΨBLpa,xq
.
“ 1

2 }y ´ ιaf x}
2
2 ` λ }x}1

ı

. (BL)

We will later see that the recovered kernel length p should be set slightly larger than p0.59

2We therefore assume w.l.o.g. that }a0}2 “ 1 in this paper.

2



The Bilinear Lasso is a nonconvex optimization problem, as the shift symmetries of SaSD create60

discrete local minimizers in the objective landscape. The regularizing effect created by problem61

symmetries is a fairly general phenomenon [6] and, as [2] shows, its influence extends far beyond62

local minimizers. The authors there analyze the Dropped Quadratic (DQ) objective363

ΨDQpa,xq » ΨBLpa,xq, when µpaq » 0.

This non-practical objective is a valid simplification of the Bilinear Lasso (BL) when the true kernel64

is itself incoherent, i.e. µpa0q » 0 (see Figures 1d and 1e or Section A in the appendix). We are65

particularly interested in the objective of the marginalized objective466

min
aPSp´1

”

ϕDQpaq
.
“ minxPRm ΨDQpa,xq

ı

, (3)

which is greatly simplified when x is generic due to concentration of measure, whilst also reducing67

the space of optimization to a significantly smaller dimension p ! m.68

Regularity in the span of a few shifts. Under suitable conditions on a0 and x0, ϕDQ enjoys a69

number of nice properties on the sphere. Suppose a » α1s`1ra0s ` α2s`2ra0s P Sp´1 is near the70

span of two shifts5 of a0. If α1 » 1 (or α2 » 0), [2] asserts that a is in a strongly convex region of71

ϕDQ, containing a single minimizer near s`1ra0s, and vice versa (Figure 1a). Near the balanced point72

α1 » α2, the influence s`1ra0s and s`2ra0s on ϕDQ creates a saddle-point, characterized by large73

negative curvature along the two shifts and positive curvature in orthogonal directions (Figure 1b).74

Between these two cases, large negative gradients point towards individual shifts.75

This characterization of ϕDQ — strong convexity near single shifts, and saddle-points near balanced76

points — extends to regions of the sphere spanned by several shifts (Figure 1c); we elaborate more77

on multiple shifts in Section A.1 of the supplementary material. This regional landscape guarantees78

that a0 can be efficiently recovered up to a signed shift using methods for first and second-order79

descent, as soon as a can be brought sufficiently close to the span of a few shifts.80

Optimization on the sphere. These nice properties of ϕDQ depend strongly on its restriction to81

the sphere, which creates a small but uniform increase in the Riemannian curvature of ϕDQ [7]. As a82

result, the sphere prevents the creation of spurious local minimizers from being created as a result of83

any particular points of the constraint surface posessing nonsmoothness or large positive curvature6.84

Initializing near a few shifts. The landscape structure of ϕDQ makes single shifts of a0 easy to85

locate, if a is initialized near a span of a few shifts. Fortunately, this is a relatively simple matter in86

SaSD, as y is itself a sparse superposition of shifts. Setting p “ 3p0 ´ 2, we initialize a by randomly87

choosing a length-p0 window ryi
.
“ ryi yi`1 . . . yi`p0´1s

T and setting88

ap0q
.
“ PSp´1

`

r 0p´1 ; ryi ; 0p´1 s
˘

. (4)

This brings ap0q suitably close to the sum of a few shifts of a0; any border-truncation effects are89

absorbed by padding the ends of ryi7.90

Implications for practical computation. The Dropped Quadratic problem (3) shows us an ex-91

ample of a nice regional landscape for SaSD where efficient recovery of a0 is guaranteed when92

µpa0q » 0. As SaS applications are often motivated by sharpening or resolution tasks [10, 11, 12],93

however, a practical algorithm must be able to handle cases where motifs are smooth and shift-94

coherent (i.e., µpa0q « 1). The Dropped Quadratic is therefore a poor approximation to the Bilinear95

Lasso for practical purposes, yet the two problems share qualitatively similar landscapes (Figures 1d96

and 1e). This suggests that he algorithmic implications discussed in Section 2 — namely optimization97

on the sphere and data initialization — are also applicable in practical settings.98

3As the intention here is apply some key messages from the Dropped Quadratic towards the Bilinear Lasso,
we intentionally omit the concrete form of ΨDQpaq. Readers may refer to Section A for more details.

4x0 can be recovered via convex optimization once a0 is found.
5Setting p ą p0 ensures that Sp´1 contains at least two shifts.
6Conversely, the popular `1-norm constraint set tends to create trivial sparse minimizers w.r.t. a [8, 9, 1].
7This initialization strategy is improved and made rigorous in [2] — readers may refer to Section A.2 in the

supplementary material for more details.
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Algorithm 1 Inertial Alternating Descent Method (iADM)

Input: Initializations ap0q P Sp´1, x P Rm; observation y P Rm; penalty λ ě 0; momentum α P r0, 1q.
Output: papkq,xpkqq, a local minimizer of ΨBL.

Initialize ap1q “ ap0q, xp1q “ xp0q.
for k “ 1, 2, . . . until converged do

Update x with accelerated proximal gradient step:

wpkq Ð xpkq ` α ¨
`

xpkq ´ xpk´1q
˘

xpk`1q
Ð softλtk

“

wpkq ´ tk ¨∇xψλ
`

apkq,wpkq
˘‰

,

where softλpvq
.
“ signpvq dmaxp|v ´ λ| ,0q denotes the soft-thresholding operator.

Update a with accelerated Riemannian gradient step:

zpkq Ð PSp´1

`

apkq ` α

xapkq,apk´1qy
¨ Papk´1q

`

apkq
˘˘

apk`1q
Ð PSp´1

`

zpkq ´ τk ¨ grada ψλ
`

zpkq,xpk`1q
˘˘

.
end for

(a) Gradient descent (b) GD with momentum

Figure 2: Momentum acceleration. a) Iterates of gradient descent oscillate on ill-conditioned functions. b)
Momentum dampens oscillation and speeds up convergence.

3 Designing a practical SaSD algorithm99

In this section, we borrow the algorithmic implications from the Dropped Quadratic (3) and build an100

algorithm based on the Bilinear Lasso (BL), which more accurately accounts for interactions between101

(highly coherent) shifts of the ground truth. We show how to address the negative effects of large102

coherence using a number of heuristics, leading to an efficient algorithm for SaSD.103

Several algorithms for SaSD-type problems have been developed for specific applications, such as104

image deblurring [8, 4, 12] and neuroscience [13, 14, 5], and image super-resolution [15, 16, 17], or105

are augmented with additional structure [18, 19, 20]. Here we will isntead attempt to leverage recent106

developments in algorithmic theory in SaSD (Section 2) to build an algorithm that performs well in107

general practical settings.108

3.1 Solving Bilinear Lasso with accelerated alternating descent109

When a0 is shift-coherent, the Hessian of ΨBL becomes ill-conditioned as a converges to single110

shifts. Such situations are known to cause slow convergence for first-order methods [21]. One remedy111

is to add momentum [22, 23] to standard first-order iterations. For instance, consider augmenting112

gradient descent, on some smooth fpzq with stepsize τ , using the term w,113

wpkq Ð zpkq ` α ¨ pzpkq ´ zpk´1qq (5)

zpk`1q Ð wpkq ´ τ ¨∇fpwpkqq. (6)

Here, α controls the momentum added8. As illustrated in Figure 2, this additional term improves114

convergence by reducing oscillations of the iterates for ill-conditioned problems. Momentum has115

been shown to improve convergence for nonconvex and nonsmooth problems [24, 25]. In Algorithm 1,116

we provide an inertial alternating descent method (iADM) for finding local minimizers of ΨBL. It117

modifies iPALM [24] to perform updates on a via retraction on the sphere [7]9.118

8Setting α “ 0 removes momentum and reverts to standard gradient descent.
9The stepsizes tk and τk are obtained by backtracking [26, 24] to ensure sufficient decrease for

ΨBL
`

apkq,wpkq
˘

´ΨBL
`

apkq,xpk`1q
˘

and ΨBL
`

zpkq,xpk`1q
˘

´ΨBL
`

apk`1q,wpk`1q
˘

.
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Algorithm 2 SaS-BD with homotopy continuation

Input: Observation y P Rm, motif size p0; momentum α P r0, 1q; initial λp1q final λ‹, penalty decrease
η P p0, 1q; precision factor δ P p0, 1q.

Output: Solution path
 

pâpnq, x̂pnq;λpnqq
(

for SaSD.
Set number of iterations N Ð

X

logpλ‹{λp1qq { log η
\

.
Initialize âp0q P R3p0´2 using Equation (4), x̂p0q “ 0 P Rm.
for n “ 1, . . . , N do

Minimize Ψλpnq to precision δλpnq with Algorithm 1:
`

âpnq, x̂pnq
˘

Ð iADM
`

âpn´1q, x̂pn´1q;y, λpnq, α
˘

.

Update λpn`1q
Ð ηλpnq.

end for

(a) λ “ 5ˆ 10´1 (b) λ “ 5ˆ 10´2 (c) λ “ 5ˆ 10´3

Figure 3: Bilinear-lasso objective ϕλ on the sphere Sp´1, for p “ 3 and varying λ. The function landscape
of ϕλ flattens as sparse penalty λ decreases from left to right.

3.2 A SaSD algorithm using homotopy continuation119

It is also possible to improve optimization by modifying the objective ΨBL directly through the120

sparsity penalty λ. Variations of this idea appear in both [1] and [2], and can also help to mitigate the121

effects of large shift-coherence in practical problems.122

When solving (BL) in the noise-free case, it is clear that larger choices of λ encourage sparser123

solutions for x. Conversely, smaller choices of λ place local minimizers of the marginal objective124

ϕBLpaq
.
“ minx ΨBLpa,xq closer to signed-shifts of a0 by emphasizing reconstruction quality.125

When µpa0q is large, however, ϕBL becomes ill-conditioned as λ Ñ 0 due to the poor spectral126

conditioning of a0, leading to severe flatness near local minimizers (Figure 3) and the creation127

spurious local minimizers when noise is present. At the expense of precision, larger values of λ limit128

x to a small set of support patterns and simplify the landscape ofϕBL. It is therefore important both129

for fast convergence and accurate recovery for λ to be chosen appropriately.130

When problem parameters – such as the severity of noise, or p0 and θ – are not known a priori, a131

homotopy continuation method [27, 28, 29] can be used to obtain a range of solutions for SaSD.132

Using the initialization (4), a rough estimate pâp1q, x̂p1qq is first obtained by solving (BL) with iADM133

using a large choice for λp1q; this estimate is refined by gradually decreasing λpnq to produce the134

solution path
 

pâpnq, x̂pnq;λpnqq
(

. Homotopy also ensures that x remains sparse along the solution135

path, effectively providing the objective ΨBL with (restricted) strong convexity w.r.t. both a and x136

throughout optimization [30]. As a result, homotopy achieves linear convergence for SaSD where137

sublinear convergence is expected otherwise (Figures 4c and 4d). In Algorithm 2, we provide a138

complete algorithm for SaSD combining Bilinear Lasso and homotopy continuation.139

4 Experiments140

4.1 Synthetic experiments141

We begin with simulations of SaSD in both coherent and incoherent settings. For coherent settings142

we use a descretized Gaussian kernel a0 “ gn0,2, where gp,σ
.
“ PSp´1

`“

exp
`

´
p2i´p´1q2

σ2pp´1q2

˘‰p

i“1

˘

.143

Incoherent kernels are simulated by sampling a0 „ UnifpSn0´1q uniformly on the sphere.144
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(a) Incoherent a0 (b) Coherent a0 (c) Incoherent a0 (d) Coherent a0

Figure 4: Synthetic experiments for Bilinear Lasso. Success probability (a, b): x0 „i.i.d. BRpθq, the success
probability of SaS-BD by solving (BL), shown by increasing brightness, is large when the sparsity rate θ is
sufficiently small compared to the length of a0, and vice versa. Success with a fixed sparsity rate is more
likely when a0 is incoherent. Algorithmic convergence (c, d): convergence of function value for iADM with
αk “ pk ´ 1q{pk ` 1q vs. αk “ 0 (ADM); with and without homotopy. Homotopy significantly improves
convergence rate, and momentum improves convergence when a0 is coherent.

(a) Simulated kernel recovery

(b) Spike train estimates (simulated)

(c) Real calcium signal vs. reconstruction

(d) Spike train estimates (real data)

Figure 5: Deconvolution for calcium imaging using Algorithm 2 with iADM and with reweighting (Section B,
supplementary material). Simulated data: (a) recovered AR2 kernel; (b) estimate of spike train. Real data: (c)
reconstructed calcium signal (d) estimate of spike train. Reweighting improves estimation quality in each case.

4.1.1 Recovery performance145

We test recovery probability for varying kernel lengths n0 and sparsity rates θ. To ensure the146

problem size is sufficiently large, we set m “ 100n0. For each n0 and θ, we randomly generate10147

x „i.i.d. BRpθq for both coherent and incoherent a0. We solve ten trials of (BL) on clean observation148

data a0 f x0 using iADM with λ “ 10´2
?
n0θ

. The probability of recovering a signed shift of a0 is149

shown in Figure 4. Recovery is likely when sparsity is low compared to the kernel length. The150

coherent problem setting has a smaller success region compared to the incoherent setting.151

4.1.2 Momentum and homotopy152

We demonstrate the effects of momentum acceleration and homotopy on convergence of the objective153

Ψλ. We deconvolve clean observations with n0 “ 102, m “ 104, and θ “ n
´3{4
0 for both coherent154

and incoherent a0. Algorithm 1 with data initialization is used to solve (BL) with λ “ 0.3?
n0θ

,155

with and without momentum (α “ 0) and homotopy. For iADM with momentum, we use an156

iteration dependent αk “ k´1
k`2 [24]. With homotopy, we apply Algorithm 2 with the hyperparameters157

λp1q “ max`|xs`rap0qs,yy| [29], λ‹ “ 0.3?
n0λ

, η “ 0.8, and δ “ 0.1. The final solve of (BL),158

regardless of method, uses a precision of ε‹ “ 10´6. The results show the effectiveness of momentum159

and homotopy on coherent problem settings, see Figures 4c and 4d.160

10BRpθq denotes the Bernoulli-Rademacher distribution, which has values ˘1 w.p. θ{2 and zero w.p. 1´ θ.
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4.2 Imaging applications161

We demonstrate the performance and generality of the proposed method with experiments on calcium162

fluorescence imaging, a popular modality for studying spiking activity in large neuronal populations163

[31], and stochastic optical reconstruction microscopy (STORM) [32, 33, 34], a superresolution164

microscopy modality used to image structures within living cells.11165

4.2.1 Sparse deconvolution of calcium signals166

Neural spike trains are temporal signals created by action potentials, which induce a transient change167

in the amount of calcium present in the surrounding environment. The observed calcium concentration168

can be modeled as a convolution a0fx0 of the transient response a0 and the spike train x0. Typically169

neither a0 nor x0 is perfectly known ahead of time.170

We first test our method on synthetic data generated according to an AR2 model for a0, which171

was used for deconvolution in [14]. This kernel is highly shift-coherent and poses a challenging172

problem setting for SaSD. Here, x0 „i.i.d. Bernoullipn´4{5
0 q P R104 and additive noise is generated173

as n „i.i.d. N p0, 5 ¨ 10´2q. Figures 5a and 5b demonstrate accurate recovery of both a0 and x0 in174

this synthetic setting. We next test our method on real data12; Figures 5c and 5d demonstrate recovery175

of spike locations in the real setting. Although iADM provides decent performance in each case,176

noise suppression and estimation quality can be improved by stronger sparsification methods, such as177

the reweighting technique [37] — see Section B of the supplementary material.178

4.2.2 Sparse blind deconvolution for super-resolution fluorescence microscopy179

The spatial resolution of fluorescence microscopy is often limited by the diffraction of light: its180

wavelength (i.e. several hundred nanometers) is often larger than typical molecular length-scales in181

cells, preventing a detailed characterization of most subcellular structures.182

The STORM technique is developed to overcome this resolution limit. Instead of activating all the183

fluorophores at the same time, STORM multiplexes the image by randomly activating photoswitchable184

fluorescent probes over multiple frames, each containing a subset of the molecules present (Figure 6).185

If the location of these molecules can be precisely determined for each frame, synthesizing all186

deconvolved frames will produce a super-resolution microscopy image with nanoscale resolution.187

For each image frame, the localization task can be formulated via the SaS model188

Yt
loomoon

STORM frame

“ ιA0
loomoon

point spread function

f X0,t
loomoon

sparse point sources

` Nt
loomoon

noise

. (7)

Here we will solve the localization task on the single-molecule localization microscopy (SMLM)189

benchmarking dataset13 via SaSD, recovering both the PSF A0 and the point source map X0,t190

simultaneously. We apply iADM with reweighting (see Section B of the supplementary material)191

on frames from the video sequence “Tubulin” containing 500 frames of size 128ˆ 128, where each192

pixel is of 100nm2 resolution14; the fluorescence wavelength is 690nm and the imaging frequency is193

f “ 25Hz. The recovered activation maps individual time frames and the aggregated super-resolution194

image is shown in Figure 6. These results demonstrate that our approach can accurately predict the195

PSF and the activation map for each video frame, producing higher resolution microscopy images15.196

4.2.3 Localizing neurons in calcium images197

Our methods are easily extended to handle superpositions of multiple SaS signals. In calcium imaging,198

this can potentially be used to track the neurons in video sequences, a challenging task due to (non-)199

rigid motion, overlapping sources, and irregular background noise [38, 39]. We consider frames200

11Other such methods developed for similar modalities include photoactivated localization microscopy
(PALM) [35], and fluorescence photoactivation localization microscopy (fPALM) [36].

12Obtained at http://spikefinder.codeneuro.org.
13Data can be accessed at http://bigwww.epfl.ch/smlm/datasets/index.html.
14Here we solve SaSD on the same 128ˆ 128 grid. In practice, the localization problem is solved on a finer

grid, so that the resulting resolution can reach 20´ 30 nm.
15The recovered PSF is provided in Section C in the supplementary material.
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(a) Frame 100, time = 4s

(b) Frame 200, time = 8s

(c) Original image

(d) Resolved image

Figure 6: SaSD for STORM imaging. (a, b) Individual frames (left) and predicted point process map using
SaSD (right). (c, d) shows the original microscopy and the super-resolved image obtained by our method.

(a) Calcium image Y

(b) Estimated kernels Ak

(c) Reconstruction Ak f Xk pk “ 1, 2q

(d) Predicted activation maps Xk

Figure 7: Classification of calcium images. (a) Original calcium image; (b) respective kernel estimates; (c)
reconstructed images with the (left) neuron and (right) dendrite kernels; (d) respective occurence map estimates.

video obtained via the two-photon calcium microscopy dataset from the Allen Institute for Brain201

Science16, shown in Figure 7. Each frame contains the cross section of several neurons and dendrites,202

which have distinct sizes. We model this as the SaS signal Yt “ ιA1 fX1,t ` ιA2 fX2,t, where203

each summand consists of neurons or dendrites exclusively. By extending Algorithm 2 to recover204

each of the kernelsAk and mapsXk, we can solve this convolutional dictionary learning (SaS-CDL)205

problem which allows us to seperate the dendritic and neuronal components from this image for206

localization of firing activity, etc. As a result, the application of SaS-CDL as a denoising or analysis207

tool for calcium imaging videos provides a very promising direction for future research.208

5 Discussion209

Many nonconvex inverse problems — including SaSD — are strongly regulated by their problem210

symmetries. Understanding this regularity (and when and how it breaks down) can provide a strong211

basis for developing effective algorithms. In this paper, we have attempted to illustrate this point212

by combining geometric intuition with practical heuristics motivated by common challenges in real213

deconvolution to produce an efficient, general purpose method that performs well on data arising from214

a range of application areas. Our approach, therefore, can serve as a general baseline for studying215

and developing extensions to SaSD, such as SaS-CDL [40, 41, 42] and Bayesian models [43, 18].216

16Obtained at http://observatory.brain-map.org/visualcoding/.
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Appendices313

A Dropped Quadratic314

Recall from Section 2.2 of the main text that SaSD can be formulated as the Bilinear Lasso problem315

min
aPSp´1,xPRm

”

ΨBLpa,xq
.
“ 1

2 }y ´ ιaf x}
2
2 ` λ }x}1

ı

. (BL)

Unfortunately, this objective is challenging for analysis. A major culprit is that its marginalization316

ϕBLpaq
.
“ min

x

!

1
2 }y ´ ιaf x}

2
2 ` λ }x}1

)

, (8)

generally does not admit closed form solutions due the convolution with a in the squared error term.317

This motivates [2] to study the nonconvex formulation318

min
aPSp´1,xPRm

”

ΨDQpa,xq
.
“ 1

2 }x}
2
2 ´ xιaf x,yy ` }y}

2
2 ` λ }x}1

ı

. (9)

We refer to (9) as the Dropped Quadratic formulation, and it is quite easy to see that ΨDQpa,xq «319

ΨDQpa,xq when }af x}2 « }x}2, i.e. if a is shift-incoherent, or µspaq « 0. The marginalized320

objective function ϕBLpaq
.
“ minx ΨDQpa,xq now has the closed form expression321

ϕDQpaq
.
“ ´1

2 }softλ rqaf ys}
2
2 . (10)

Here soft denotes the soft-thresholding operator, and qa denotes the adjoint kernel of a, i.e. the kernel322

s.t. xιaf u,vy “ xu, qaf vy @u,v P Rm.323

A.1 Landscape Geometry324

The rest of Section 2.2 discusses the regional characterization of ϕDQ in the span of a small number325

of shifts from a0. This language is made precise in the form of the subsphere326

SI
.
“

 
ř

`PI α`s` rιa0s : α` P R
(
Ş

Sp´1, (11)
spanned by a small set of cyclic shifts of ιa0. Although we will not discuss the explicit distance327

function here, the characterization by [2] holds whenever a is close enough to such a subsphere328

with |I| ď 4θp0, where θ is the probability that any individual entry of x0 is nonzero. Suppose329

we have a «
ř

`PI α`s` rιa0s for some appropriate index set I. Note that if µsa0 « 0, then330

µsa « 0, @a P SI . Now let αp1q and αp2q be the first and second largest coordinates of the shifts331

participating in a, and let sp1qra0s and sp2qra0s be the corresponding shifts. Then332

• If
ˇ

ˇ

ˇ

αp2q
αp1q

ˇ

ˇ

ˇ
« 0, then a is in a strongly convex region of ϕDQ, containing a single local333

minimizer corresponding to sp1qra0s.334

• If
ˇ

ˇ

ˇ

αp2q
αp1q

ˇ

ˇ

ˇ
« 1, then a is near a saddle-point, with negative curvature pointing towards sp1qra0s335

and sp2qra0s. If
ˇ

ˇ

ˇ

αp3q
αp2q

ˇ

ˇ

ˇ
« 0 , i.e. sp1qra0s and sp2qra0s are the only two participating shifts,336

then ϕDQ is also characterized by positive curvature in all orthogonal directions.337

• Otherwise, x´gradϕDQpaq, z ´ ay takes on a large positive value, for either u “ sp1qra0s338

or u “ sp2qra0s, i.e. the negative Riemannian gradient is large and points towards one of the339

participating shifts.340

This is an example of a ridable saddle property [44] that allows many first and second-order methods341

to locate local minimizers. Since all local minimizers of ϕDQ near SI must correspond to signed-shifts342

of a0, this guarantees that the Dropped Quadratic formulation can be efficiently solved to recover a0343

(and subsequently x0) for incoherent a0, as long as a is initialized near some appropriate subsphere344

and the sparsity coherence tradeoff p0θ Æ pµspa0qq
´1{2 is satisfied. We note that this is a poor345

tradeoff rate, which reflects that the Dropped Quadratic formulation is non-practical and cannot346

handle SaSD problems involving kernels with high shift-coherence.347
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Data y Kernel a0 Sparse x0

Truncation ap´1q Initialization ap0q

“ ˚

«

αisira0s ` αjsjra0s

Figure 8: Illustration of data-driven initialization for a: using a piece of the observed data y to generate a
good initial point ap0q. Top: data y “ a0 f x0 is a superposition of shifts of the true kernel a0. Bottom: a
length-p0 window contains pieces of just a few shifts. Bottom middle: one step of the generalized power method
approximately fills in the missing pieces, yielding an initialization that is close to a linear combination of shifts
of a0 (right).

A.2 Data-driven initialization348

For the SaS-BD problem, we usually initialize x by xp0q “ 0, so that our initialization is sparse.349

For the optimization variable a P Rn, recall from Section 2.2 in the main text that it is desirable to350

obtain an initialization a0 which is close to the intersection of Sp´1 and a subsphere SI spanned by351

a few shifts of a0. When x0 is sparse, our measurement y is a linear combination of a few shifts352

of a0. Therefore, an arbitrary consecutive p0-length window ryi
.
“ ryi yi`1 . . . yi`p0´1s

T of the353

data y should be not far away from such a subspace SI . As illustrated in Figure 8, one step of the354

generalized power method [2]355

rap0q
.
“ PSp´1

`

r 0p´1 ; ryi ; 0p´1 s
˘

(12)

ap0q “ PSn´1

´

´∇ϕDQ

´

rap0q
¯¯

(13)

produces a refined initialization that is very close to a subspace SI spanned by a few shifts of a0 with356

|I| « θp0. However, (13) is a relatively complicated for a simple idea. In practice, we find that the357

simple initialization ap0q “ rap0q from (12) works suitably well for solving SaSD with (BL).358

B Reweighted sparse penalization359

When a0 is shift-coherent, minimization of the objective ΨBL with respect to x becomes sensitive360

to perturbations, creating “smudging” effects on the recovered map x. These resolution issues can361

be remedied with stronger concave regularizers. A simple way of facilitating this with the Bilinear362

Lasso is to use a reweighting techinque [37]. The basic idea is to adaptively adjust the penalty by363

considering a weighted variant of the original Bilinear Lasso problem from (BL),364

min
aPSp´1,xPRm

Ψw
BLpa,xq

.
“ 1

2 }y ´ af x}
2
2 ` λ }w d x}1 (14)

where w P Rm` and d denotes the Hadamard product. Here we will set the weightsw to be roughly365

inverse to the magnitude of the true signal x0, i.e.,366

wi “
1

|x0,i| ` ε
. (15)

In addition to choosing λ ą 0, here ε ą 0 trades off between sparsification strength (small ε) and367

algorithmic stability (large ε). Let |x|piq denote the i-th largest entry of |x|. For experiments in the368

main text, we set369

ε “ max
!

|x|prn{ logpm{nqsq , 10´3
)

.
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(a) True map x0

(b) True motif a0

(c) Noisy y, `1 only

(d) Noisy a, `1 only

(e) Noisy y, reweighted

(f) Noisy a, reweighted

Figure 9: Recovery of x0 with `1-reweighting. (a, b) Truth signals. (c) Solving minx ΨBLpa,xq with noisy
data and coherent a0 leads to low-quality estimates of x; (d) performance suffers further when a is a noisy
estimate of a0. (e, f) Reweighted `1 minimization alleviates this issue significantly.

(a) PSF in 2D (b) PSF in 3D

Figure 10: Estimated PSF for STORM imaging. The left hand side shows the estimated 8ˆ 8 PSF in 2D,
the right hand side visualizes the PSF in 3D.

Starting with the initial weights wp0q “ 1m, Algorithm 3 successively solves (14), updating the370

weights using (15) at each outer loop iteration j. As j Ñ 8, this method eventually becomes371

equivalent to replacing the `1-norm in (BL) with the nonconvex penalty
ř

i logp|xi| ` εq [37].372

Algorithm 3 Reweighted Bilinear Lasso

Input: Initializations âp0q, x̂p0q, penalty λ ą 0

Output: Local minimizers âpjq, x̂pjq of Ψwpjq

BL .
Initialize wp1q “ 1m, j Ð 1.
while not converged do

Using the initialization
`

âpj´1q, x̂pj´1q
˘

and weight wpjq, solve (14) — e.g. with iADM — to
obtain solution

`

âpjq, x̂pjq
˘

;
Set ε with (16) and update the weights as

wpj`1q “
1

ˇ

ˇx̂pjq
ˇ

ˇ` ε
. (16)

Update `Ð `` 1.
end while
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We could easily adopt our iADM algorithm to solve this subproblem, by taking the proximal gradient373

on x with different penalty λi for each entry xi. Figure 9, as well as calcium imaging experiments in374

Section 4.2, Figure 5 of the main text, demonstrate improved estimation quality as a result of this375

method.376

C Super-resolution with STORM imaging377

For point source localization in STORM frames, recall that we use the SaS model from Section 4.2.2,378

Yt
loomoon

STORM frame

“ ιA0
loomoon

point spread function

f X0,t
loomoon

sparse point sources

` Nt
loomoon

noise

. (17)

We then apply our SaSD method to recover both A0 and X0,t from Yt. We show our recovery of379

X0,t as well as the super-resolved image using all available frames in Figure 6 of the main text. Since380

the main objective of STORM imaging is to recover the point sources, we have deferred the recovered381

PSFA0 to Figure 10 here.382
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