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Abstract

In applications of scanning probe microscopy, images are acquired by raster1

scanning a point probe across a sample. Viewed from the perspective of2

compressed sensing (CS), this pointwise sampling scheme is inefficient,3

especially when the target image is structured. While replacing point mea-4

surements with delocalized, incoherent measurements has the potential to5

yield order-of-magnitude improvements in scan time, implementing the6

delocalized measurements of CS theory is challenging. In this paper we7

study a partially delocalized probe construction, in which the point probe is8

replacedwith a continuous line, creating a sensor which essentially acquires9

line integrals of the target image. We show through simulations, rudimen-10

tary theoretical analysis, and experiments, that these line measurements11

can image sparse samples far more efficiently than traditional point mea-12

surements, provided the local features in the sample are enough separated.13

Despite this promise, practical reconstruction from linemeasurements poses14

additional difficulties: the measurements are partially coherent, and real15

measurements exhibit nonidealities. We show how to overcome these limi-16

tations using natural strategies (reweighting to cope with coherence, blind17

calibration for nonidealities), culminating in an end-to-end demonstration.18

1 Introduction19

Scanning probe microscopy (SPM) is a fundamental technique for imaging interactions20

between a probe and the sample of interest. Unlike traditional optical microscopy, the reso-21

lution achievable by SPM is not constrained by the diffraction limit, making SPM especially22

advantageous for nanoscale, or atomic level imaging, which has widespread applications in23

chemistry, biology andmaterials science [1]. Conventional implementations of SPM typically24

adopt a raster scanning strategy, which utilizes a probe with small and sharp tip, to form a25

pixelated heatmap image via point-by-point measurements from interactions between the26

probe tip and the surface. Despite their capability of nanoscale imaging, SPM with point-27

wise measurement is inherently slow, especially when scanning a large area or producing28

high-resolution images.29

When the target signal is highly structured, compressed sensing (CS) [2, 3, 4] suggests it is30

possible to design a data acquisition scheme in which the number of measurements is largely31

dependent on the signal complexity, instead of the signal size, from which the signal can be32

efficiently reconstructed algorithmically. In nanoscale microscopy, images are often spatially33

sparse and structured. CS theory suggests for such signals, localized measurements such as34

pointwise samples are inefficient. In contrast, delocalized, spatially spread measurements35

are better suited for reconstructing a sparse image.36
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Figure 1: Left: lab made SECM device
with line probe. Right: closeup side view
of line probe near a sample surface.

Unfortunately, the dense (delocalized) sensing37

schemes suggested by CS theory (and used in other38

applications, e.g., [5, 6, 7]) are challenging to im-39

plement in the setting of micro/nanoscale imaging.40

Motivated by these concerns, [8] introduced a new41

type of semilocalized probe, known as a line probe,42

which integrates the signal intensity along a straight43

line, and studied it in the context of a particular mi-44

croscopy modality known as scanning electrochem-45

ical microscopy (SECM) [9, 10]. In SECM with line46

probe, the working end of the probe constitutes a straight line, produces a singlemeasurement47

by collecting accumulated redox reaction current induced by the probe and sample. These48

line measurements are semilocalized, samples a spatially sparse image more efficiently than49

measurements from point probes, and “has an edge” on high resolution imaging since a thin50

and sharp line probe can be manufactured with ease. Moreover, experiments in [8] suggest51

that a combination of line probes and compressed sensing reconstruction could potentially52

yield order-of-magnitude reductions in imaging time for sparse samples.53

Realizing the promise of line probes (both in SECM and in microscopy in general) demands54

a more careful study of the mathematical and algorithmic problems of image reconstruction55

from line scans. Because these measurements are structured, they deviate significantly56

from conventional CS theory, and basic questions such as the number of line scans required57

for accurate reconstruction are currently unanswered. Moreover, practical reconstruction58

from line scans requires modifications to accommodate nonidealities in the sensing system.59

In this paper, we will address both of these questions through rudimentary analysis and60

experiments, showing that if the local features are either small or separated, then stable61

image reconstruction from line scans is attainable.62

1.1 Related work63

Compressed sensing tomography. Line measurements also arise in computational tomogra-64

phy (CT) imaging [11, 12, 13, 14, 15, 16]. Classical CT reconstruction recovers an image from65

densely sampled line scans, by approximately solving an inverse problem [17, 18]. These66

methods do not incorporate the prior knowledge of the structure of the target image, and67

degrade sharply when only a few CT scans are available. Compressed sensing offers an68

attractive means of reducing the number of measurements needed for accurate CT image69

reconstruction, and has been employed in applications ranging from medical imaging to70

(cryogenic) electron transmission microscopy [19, 20, 21, 22, 23, 24, 25, 26]. The dominant71

approach assumes that the target image is sparse in a Fourier or wavelet basis, and recon-72

structs it via `1 minimization or related techniques. Images in SECM and related modalities73

typically exhibit much stronger structure: they often consist some number of small particles74

[27, 28], or other repeated motifs [29]. In this situation, CS is especially promising. On the75

other hand, as we will see below, understanding the interaction between line scans and76

spatially localized features demands that we move beyond conventional CS theory.77

Mathematical theory of line scans: Radon transform and image super-resolution. The78

question of recoverability from line measurements is related to the theory of the Radon79

transform, which corresponds to a limiting situation in which line scans at every angle are80

available [30, 31, 32]. The Radon transform is invertible, meaning perfect reconstruction is81

possible (albeit not stable) in this limiting situation. Due to the projection slice theorem [33],82

the line projections are inherently lowpass, and so the line scan reconstruction problem is83

related to superresolution imaging [34]. When the image of interest consists of sparse point84

sources, the image can be stably recovered from its low-frequency components, provided the85

point sources are sufficiently separated [35]. Similarly, we can hope to achieve stable recovery86

of localized features from line scans as long as the features are sufficiently separated.87

2 Line measurement model88

To implement line scans for SECM, a line probe (Figure 1) is mounted on an automated89

arm which positions the probe onto the sample surface. The line scan signal is generated by90

placing this line probe in different places, and measuring the integrated current induced by91

the interaction between the line probe and the electroactive part of the sample. In a pragmatic92
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Figure 2: Flow chart for scanning procedure of SECM with continuous line electrode probe.

scanning procedure (Figure 2), the user will choose distinct scanning angles θ1, . . . , θm. For93

each angle θ, the line probe is oriented in direction uθ = (cos θ, sin θ) and swept along the94

normal direction u⊥θ = (sin θ,− cos θ). Each sweep of probe generates the projection of the95

target image along the probe direction uθ; collecting these projections for each θi, we obtain96

our complete set of measurements.97

Line projection. To describe the scanning procedure more precisely, we begin with a98

mathematical idealization, in which the probe measures a line integral of the image. In this99

model, when the probe body is oriented in direction uθ at position t, we observe the integral100

of the image over `θ,t := {w ∈ R2
∣∣ 〈u⊥θ , w〉 = t}:101

Lθ[Y ](t) :=
∫
`θ,t
Y (w) dw :=

∫
s
Y
(
s · uθ + t · u⊥θ

)
ds. (2.1)

Collecting these measurements for all t, we obtain a function Lθ[Y ] which is the projection102

of the image along the direction uθ. We refer to the operation Lθ : L2(R2) → L2(R) as a103

line projection. Combining projections inm directions Θ = {θi}mi=1, we obtain an operator104

LΘ : L2(R2)→ L2(R× [m]):105

LΘ[Y ] := 1√
m

[Lθ1 [Y ], . . . ,Lθm [Y ] ] . (2.2)

Line scans. In reality, it is not possible to fabricate an infinitely sharp line probe, and hence106

our measurements do not correspond to ideal line projections, but rather their convolution107

with a point spread function ψ that models blurring along the scanning direction. In SECM,108

ψ is typically skewed, with a long tail in the sweeping direction. Accounting for this effect109

is important, if we wish to obtain accurate reconstructions in practice. In this more realistic110

model, our measurements become111

R̃ = 1√
m

[ψ ∗ Lθ1 [Y ] , . . . ,ψ ∗ Lθm [Y ]] =: ψ ∗ LΘ [Y ] . (2.3)

This measurement consists ofm functions ψ ∗ Lθi [Y ] (t) of a single (real) variable t, which112

corresponds to the translation of the probe in theu⊥θi direction. In practice, we do notmeasure113

this function at every t, but rather collect n equispaced samples, giving measurements114

Ri = S{R̃i} ∈ Rn and R = [R1, . . . ,Rm] ∈ Rn×m. Our task is to understand when and115

how we can reconstruct the target image Y from these samples.116

3 Promises and problems of line scans117

3.1 Compressed sensing of line projections for highly localized image118

As a proof of concept, we first show that the line probe can efficiently sense sparse images119

consisting of well-separated features:120

Lemma 3.1. Consider an image consists of k ≥ 2 discs radius r. If the centers w1, . . . ,wk are121

separated such that mini 6=j ‖wi −wj‖2 >
2
C k

2r, then three line scans with probe direction chosen122

independent uniformly at random suffice to recover the image with probability at least 1− C.123

Lemma 3.1 shows if we assume the sparse component of the image signal are small and124

separated discs; if the radius of the discs are sufficiently small, then, perhaps surprisingly,125

only three line projections are required to exactly reconstruct the image.126

3.2 Reconstructability from line projections of localized image in practice127

While the microscopic images are often sparse in spatial domain, they rarely satisfy the128

conditions of Lemma 3.1. In the following, we show that in practical application of line scans,129

when the image consists of multiple localized motifs, the performance of line measurements130

degrades as the ratio between the size of motifs and their separation increases.131
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Figure 3: (i): Least eigenvalue of G̃with motifs on hexagonal lattice. We show an example image of
motifs placed on the lattice locations (left), and calculate the least eigenvalue with varying number of
motifs and distance-to-diameter ratio (right). (ii): The point spread function of line probe is skewed
in the sweeping direction. We show a close form PSF used for reconstruction (left); and software
(LabVIEW) simulated PSF whose shape and intensity changes as the contacting angle varies (right).

Coherence of line projection of two localized motifs Inspired by CS, we study the con-132

ditioning of the line projection LΘ when it is restricted to an image with sparsely populated133

motifsD ∈ L2(R2). Consider an image with two motifs located at different locations, and134

define a 2×2 GrammatrixGwith its ij-th entries being coherence [36] between line projected135

signal of two motifsD with center at wi and wj respectively,136

Gij =
〈
LΘ[D ∗ δwi ], LΘ[D ∗ δwj ]

〉
. (3.1)

If the off-diagonal entryGij is small in magnitude compared to the diagonal entriesGii,Gjj ,137

then it suffices to reconstruct the image exactly with efficient algorithm. Conversely, ifG is138

ill-conditioned or even rank-deficient, then exact recovery will be impossible.139

Lemma 3.2. LetD be a two-dimensional Gaussian pdf with variance r and normalized in a sense140

that ‖L0[D]‖L2 = 1. If θ is uniformly random, then the expectation of inner product between two141

line projectedD at different locations wi,wj is bounded by142 (
1− d2

8r2

)
1d≤2r + r

2d1d>2r ≤ Eθ
〈
Lθ[D ∗ δwi ], Lθ[D ∗ δwj ]

〉
≤ 1√

1+d2/4r2
. (3.2)

where d = ‖wi −wj‖2 and δw is the Dirac measure at w.143

Lemma 3.2 shows the coherence between line projections of two Gaussian of variance r144

and center distance d is dominated by the distance-to-diameter ratio d/2r. Because of the145

projection slice theorem, the matrix EθG is always positive definitive. However, its condition146

number greatly increases when the image is consists of highly overlapping local features.147

When the ratio is small, say d/2r < 1, in which the two projectedmotifs are overlapping, then148

EθGij will be close to one aswith the diagonals, impliesEθG become severely ill-conditioned149

even in the two-sparse case. Generally speaking, line scans are not CS-theoretical optimal150

sampling method for sparse recovery for image of superposing discs.151

Injectivity of line projection of multiple motifs with minimum separation To extend152

the study of the coherence of matrix G to samples that contain k > 2 motifs D. We first153

investigate a model configuration whose motif centers are allocated on a hexagonal lattice154

with edges of length d. It turns out that the smallest eigenvalue of an approximationG with155

respect to the locations {w1, . . . ,wk} is largely determined by the distance-to-diameter ratio156

d/2r, and depends only weakly on the total number of motifs.157

In Figure 3, we calculate the least eigenvalue of an approximation EθG with G̃, where158

G̃ij = (1 + ‖wi −wj‖22 /4r
2)−1/2 is obtained from the upper bound in Lemma 3.2. We show159

that when these motifs are highly overlapping with distance-to-diameter ratio d/2r = 0.5,160

the least eigenvalue of G̃ is very close to zero and the matrix is nearly rank-deficient; when161

the motifs are separated, say d/2r ≥ 1, the least eigenvalue of G̃ is steadily larger then162

zero and approaches one as the ratio d/2r increases. Interestingly, in our experiments163

the least eigenvalue does not depend strongly on the number of motifs, suggesting that164

the distance-to-diameter ratio is the dominant factor for injectivity of line projections on165

motifs with hexagonal placement. Since the hexagonal configuration is the densest circle166

4



packing on a plane, we suspect that λmin(EθG) is also determined by the ratio d/2r for every167

configurations satisfying the minimum separation property. This conjecture gains more168

ground when viewing this problem from the point source super-resolution perspective [35].169

It is known that an image consisting of point measures x =
∑
i αiδwi can be stably recovered170

from its low frequency information (with frequency cutoff fc) whenever the point sources171

have minimum separation d > C/fc for some constant C, regardless of the number of such172

point measures in x. In our scenario, we will show that the expected line projection EθL∗θLθ173

is also a low-pass filter; and since the local featuresD is also often consists of low frequency174

components, our line projections LΘ[D ∗X] can be modeled as the low-pass measurements175

from sparse mapX , implying stable and efficient sparse reconstruction is possible as long176

asX is enough separated under infinitely many line measurements of all angles.177

Lemma 3.3. SupposeD is two-dimensional Gaussian of variance r with ‖L0[D]‖L2 = 1 andX is178

finite summation of Dirac measure. If θ is uniformly random, then EθD ∗L∗θLθ[D ∗X] is a lowpass179

filter K onX with cut-off frequency fc satisfying180

fc = 1
r ·min

{
2r2ε−1,

√
|log (8r2ε−1)|+ 0.2

}
, (3.3)

in the sense that max‖ξ‖2≥fc |F2 {K} (ξ)| ≤ ε.181

Lemma 3.3 shows when the radius ofD is sufficiently large, then the cut-off frequency fc is182

dominated by the cut-off frequency ofD, hence it is sufficient to recoverX as long as the183

separation d satisfies d > Cr, which is also reflected from the observation of Figure 3. In cases184

with small (pointy)D, the cut-off frequency is mainly determined by the low-pass property185

of line projection, which requires minimum separation d > Cε/r for exact reconstruction.186

3.3 Obstacles of image reconstruction from line scans187

Besides the apparent nonideality of coherence of line scan measurements which is not188

CS theoretical optimal, this specific sampling method and its corresponding hardware189

limitations causes other practical nuisances during image reconstruction.190

High coherence of line scans. To show the coherence is a cause for concern, consider the191

nonnegative Lasso192

minX≥0 λ ‖X‖1 + 1
2 ‖A[X]−R‖22 (3.4)

from observstionR = A[X0] and linear, column normalized and coherent sampling method193

A. Denote Ω as the support set of solution of (3.4), writeAΩ as the submatrix ofA restricted194

on columns of support Ω, the unique solutionX of program (3.4) (provided ifAΩ is injective)195

can be written as196

Xij =
[
X0ij − λ(A∗ΩAΩ)−11

]
+
wij ∈ Ω; Xij = 0 wij 6∈ Ω. (3.5)

When A is coherent, columns of A have large inner product, implies many entries of the197

matrixA∗ΩAΩ have large, positive off-diagonal entries close to its diagonals. When the sparse198

penalty λ is large in (3.4), its solution will have incorrect relative magnitudes sinceA∗ΩAΩ199

is not close to identity matrix as conventional CS measurements [37]. When λ is small, the200

solution of programwill be highly sensitive to noise, occasionally leading to incorrect results.201

Incomplete information of PSF of line scans. Another layer of complexity for CLP scans202

is the difficulty to correctly identify its PSF due to hardware limitations, especially when203

operating line scans in nanoscale. For instance in Figure 3 (right), we show if the contacting204

angle between the probe and the sample varies, the corresponding PSF changes drastically205

in both the peak magnitude and the shape. It turns out that even with seemingly small206

changes of probe condition, the corresponding PSF can be inevitably variated.207

4 Reconstruction from line scans208

In all following experiments, we consider a representative class of images Y characterized209

by superposing reactive speciesD at locationsW =
{
w1, . . . ,w|W|

}
⊂ R2 with intensities210 {

α1, . . . , α|W|
}
⊂ R+. Define the activation mapX0 as sum of Dirac measure atW , then Y211

can simply be written as convolution betweenD andX0:212

Y = D ∗X0 =
∑|W|
j=1 αjD ∗ δwj . (4.1)

The image reconstruction problem is then cast as finding the best fitting sparse map X̂213

from line scansR = S{Ψ ∗ LΘ[Y ]}, and the reconstructed image is simplyD ∗ X̂ . Since all214
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Figure 4: Phase transition [8] of fixed image size (i) and fixed density (ii) on support recovery with
Lasso. In all experiments d/2r ≥ 1 is ensured. Both of the phase transitions show the number of line
scans required is almost linear proportional to the number of discs for exact reconstruction, and the
scanning efficiency is better than point probe by 3-10 times.

associated operations onX0 (convolution withD,ψ and line projection LΘ) are all linear,215

this becomes a sparse estimation problem, which can be solved via the Lasso:216

minX≥0 λ
∑
ijXij + 1

2 ‖R− S{ψ ∗ LΘ[D ∗X]}‖22 . (4.2)

4.1 Sparse recovery with Lasso from line projections217

In light of Section 3.2, the measurement performance using infinitely many line scans is218

almost dependent only on the distance-to-diameter ratio of the local features. Since in219

practice, only finite number line scan is available, we want to study how many line scans220

will be sufficient for efficient and exact sparse image reconstruction. We do this by studying221

the performance of algorithm (4.2) while assuming the line scan are idealized where ψ = δ.222

Figure 4 shows the reconstruction performance from line scans with varying number of223

line scans (uniform randomly chosen angle) used and number of discs in the images Y224

(discs of radius r at random location satisfying d/2r ≥ 1 via rejection sampling). Here, two225

experiment setting is presented: fixed area (3×3mm2, disc radius 50µm) and fixed density (226

20 discs/mm2, disc radius 50µm). In the phase transition (PT) image, each pixel represents227

the average of 50 experiments; and in each experiment, given a random image Y line scans,228

if solving (4.2) correctly identify the support map of Y , then the algorithm succeeds, and229

vise versa. It shows clear transition lines in both PT images, and the comparison of scanning230

time between line/point probes shows clear improvement of scanning efficiency.231

Interestingly if we compare the resultwith CS theory, which asserts the numbermeasurement232

of samples required is close to linear proportional to signal sparsity; here, though the line233

scans are not CS-optimal, both PT images exhibits similar phenomenon. When the image234

size is fixed, total number of samplesm is proportional to the line scan count N , with PT235

transition line showing linear proportionality between number of line scans and discsN ∝ k,236

givesm ∝ k; on the other hand, when the image density is fixed, the number of samplesm237

is proportional toN ×
√
k while the transition line in PT is showingN ∝

√
k, again suggests238

linear proportionality between number of measurement and sparsitym ∝ N
√
k ∝ k.239

In either case, line measurements are substantially more efficient than measurements with a240

point probe. Realizing this gain in practice requires us to modify the Lasso to cope with the241

following nonidealities: (i) line scans are coherent, (ii) the PSF ψ is typically only partially242

known, and (iii) naive approaches to computing with line scans are inefficient when the243

target resolution is large. Below, we show how to address these issues, and give a complete244

reconstruction algorithm.245

4.2 Practical Reconstruction with Nonidealities246

Fast computation of discrete line projection The line projection of an image Y in direc-247

tion of angle θ is equivalent to the line projection at 0◦ of clockwise rotated Y by angle θ.248

This enables an efficient line projection computationally via fast image rotation with shear249

transform in Fourier domain [38] (see appendix); and more importantly, its adjoint (back250

projection) can be computed in a similarly explicit manner.251

Reweighting Lasso for coherent measurements To cope with the coherence phenomenon,252

we adopt the reweighting scheme [39] by solving Lasso formulation (4.2) multiple times253
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Figure 5: (i). To reconstruct the image (left) from 6 line scanswith simulated PSF in Figure 3 using Lasso
with large λ gives images of unbalanced magnitude (mid left) due to coherence; while using Lasso
with small λ provides blurry image (mid right) due to the weakened sparsity regularizer. Reweighed
Lasso (right) consistently generates good result. (ii). We simulate a line scan with uneven magnitude
(left) from image (mid left). Reweighting method (mid right) cannot identify the correct support; while
the reweighting plus calibration method (right) approximately recovers the image.

while updating penalty variable λ in each iterate. At k-th iterate, the algorithm chooses the254

regularizer λ in (4.2) base on the previous outcome of lasso solutionX(k), where255

λ
(k)
ij ← C(X

(k−1)
ij + ε)−1 (4.3)

with ε being themachine precision constant andC being close to the smooth part in (4.2). The256

effect of reweighting method is two-fold: (i) it is a majorization-minimization algorithm of257

sparse regression using log-norm as sparsity surrogate [39], hence, discovers sparse solution258

more effectively compares to the use of `1-norm in Lasso; and (ii) the sparsity surrogate in259

final stages of reweighting approaches `0-norm, by seeing X
(k+1)
ij

X
(k)
ij +ε

≈ 1 ifX(k)
ij 6= 0 as k →∞.260

As a result, in the final stages, problem (4.2) effectively turns into least squares, restricted261

to the support ofX , which produces a sparse solution with correct magnitude. Figure 5262

(left) displays an example of reweighting scheme, showing better reconstruction result than263

vanilla Lasso.264

Blind calibration for incomplete PSF information We can cope with incomplete infor-265

mation about the PSF by working with a parametric family of PSF’s and optimizing the266

parameters at reconstruction time. Here, we allow the PSF to vary from scan to scan, writing267

ψ(pi) for the PSF for the i-th scan, with parameters pi. We optimize both the parameters268

p1 . . .pm and the sparse mapX via alternating minimization. Figure 5 (right) exhibits a269

simulated example in which the PSF of line scans has unbalanced magnitudes due to the270

variation of probe scanning angle (Figure 3), suggests incorporating calibration scheme271

achieves successful reconstruction while non-calibration method falls short.272

4.3 Image reconstruction algorithm from line scans273

Finally we formally state the complete algorithm (see appendix) for reconstruction of SECM274

image from its line scans. The algorithm solves multiple iterations of275

min
X≥0,p∈P

∑
ij λ

(k)
ij Xij +

∑m
i=1

1
2 ‖S{ψ(pi) ∗ Lθi [D ∗X]} −Ri‖22 . (4.4)

while updating the penalty variable λ(k) in each iterate base on (4.3) with C ≈ 1
2‖S{ψ ∗276

LΘ[D ∗X(k−1)]}−R‖22. To solve a single iterate of (4.4), the algorithm utilize an accelerated277

alternating minimization method specifically for nonsmooth, nonconvex objectives (iPalm278

[40], see appendix). We choose the step size for this method by backtracking since (4.4) can279

be highly non-smooth locally.280

5 Real data experiments281

Figure 6-(i) compares the reconstruction result (10µm per pixel) between the line probe282

and point probe scans on a simplistic three disc samples (75µm radius, platinum). Here,283

the point probe tip diameter and the line probe edge thickness are equivalent (≈ 20µm),284

and the probe moving speed (100ms), the sampling period (10µm), and the probe end285

material (platinum) are identical as well. Four images are shown here, including the optical286

closeup image for the three discs, the line scans, and the reconstruction image of either287

point probe or the line probe. In the optical image, the straight arrow represents the probe288

sweeping direction, and the angular arrow states sample rotation direction (clockwise) with289

angle θs. In the reconstructed images, the black circles indicated the ground truth size and290

location of the discs derived from the optical image. The reconstruction algorithm is setup291
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Figure 6: (i). Real data experiments on 3 platinum discs [41], the black circles in the microscopic
images are derived from the disc location in camera image. (ii)-(iii). Real data experiments of 8, 10
platinum discs, in which the location map is also the result of line scan reconstruction.

with 6 reweighting iterations, where each iterates runs 50 iterates of iPalm. We can see292

the reconstruction from point probe exhibits distortion in image due to the skewness of293

probe PSF along its proceeding direction during raster scans; while the image of line scan294

reconstruction presents three circular features with its size and locations are agreeing with295

the ground truth.296

In Figure 6-(ii)-(iii), we reconstruct the image (20µm per pixel) of samples consist of platinum297

discs arranged in a more complicating configuration. Two sets of the experiment are pre-298

sented here, which are the samples consist of 8 or 10 discs, while the disc diameter/image299

resolution/probe dimension/sampling period/algorithm iterations are all identical to the300

three discs case. We demonstrate both of the resulting reconstructed image and the location301

map defined by 1{Xij≥0.5‖X‖∞} at (i, j)-th entry. For these more complicated images, our302

algorithm are still able correctly identify the location and shape of the platinum discs. The303

corresponding location mapsX are also estimated with reasonable accuracy.304

6 Summary & Discussion305

This paper describes issues, both theoretical and practical, that arise in reconstructing images306

from a new scanning probe microscopy technique, which has the potential to image sparsely307

populated samples much more efficiently than conventional approaches. There are many308

directions for future work. Our focus here has been on SECM, but the approach and technical309

results here are applicable to other scanning probemicroscopymodalities, and are potentially310

applicable to other modalities such as CT that image based on projections. Motivated by311

materials science applications, our reconstruction approach focuses on images consisting of312

localized features; in other areas, different signal models may be approach. Unlike many313

other imaging modalities, in SPM the design of probe topography (i.e. the sampling pattern)314

is not limited to a straight line, therefore it is possible to adopt various different probe design315

accommodate different signal structures. Finally, obtaining sharp estimates of the required316

number of line scans is an interesting question for future theoretical work.317
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